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Pattern recognition algorithms based on fuzzy set theory
were investigated and compared to their analogs which use
traditional, or crisp set theory. The fuzzy K-means
clustering algorithm was investigated and the fuzzy
K-nearest neighbor and fuzzy 1-nearest prototype classifier
algorithms were, developed. - These- pattern- recognition
algorithms produce membership assignments (values from zero
to one) for the samples considered. Thus, a sample's
' degree of belonging- in a class can be assessed via these
membership assignments.

The fuzzy K-means algorithm serves as an introduction to
pattern recognition using fuzzy set theory. By varying a
weighting factor(m), used in the-fuzzy K-means, over its
allowable range (1 S m < e ) interesting results were
obtained. These results show that the fuzzy K-means
algorithm can outperform the crisp version. While execution
of the fuzzy K-means algorithm requires more computations %
than the crisp version the resulting memberships provide
more information than the simple cluster assignments
produced by the crisp K-means algorithm. L

As with the fuzzy clustering algorithm, the membership
assignments produced by the fuzzy classification algorithms
provides a level of information above that provided by the
crisp classifiers. The ideal outcome would be to produce
membership assignments which indicate the sample's "degree
of belonging" in the class of maximum membership. In
attempting to acheive this, a technique for labelled sample
membership initialization (used for unknown sample
membership assignments) was developed. The method resulted
in membership assignments for most unknown samples which
were close to one when correctly classified(via maximum
membership) and closer to or -half when misclassified.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Recognizing patterns, classes, or populations in sample

data is an important part of many problems of current

interest. Examples such as scene analysis, character

recognition, and speech analysis are but a few of the many

areas in which pattern recognition techniques have been Jk

utilized. Pattern recognition, as a scientific discipline,

strives to produce an automated procedure for assigning each

element of a set of input data to one of a finite set of .

classes(1). Thus, a pattern recognition system should

reduce the quantity of data present while retaining the

information carried. This reduction has become an

Increasingly important factor as the quantity of data made

available by modern digital computer systems continues to

grow. Without successful techniques for handling and

Interpreting data, the sheer quantity produced can become a

burden rather than an aid. Pattern recognition techniques
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are recognized as providing useful approaches to solution of

this problem(l). As a result, such techniques have been

used extensively in the design of computerized information

processing systems(l).

The pattern recognition or classification model is

composed of the following three components: a transducer, a

feature extractor, and a classifier(2). The transducer

senses the input and converts it into a form suitable for

machine processing. The feature extractor receives the

output of the transducer and extracts a set of feature

measurements which represent the nature of the data.

Finally, these feature measurements are received by a -.

classifier which assigns the input data elements to one of-.

the possible classes.

Each of the components described above is dependent to a

varying degree on the particular problem being considered.

The design or specification of a suitable transducer is

highly problem dependent and is not considered in this

report. In general, of the remaining two components, the

problem of feature extraction is much more problem dependent

than that of classification. Many useful techniques for

feature extraction exist, some of which are discussed in

(1,2). While the problem of feature extraction is not

considered specifically in this study, it is important to

realize the connection between it and the classification
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problem. The better the input is represented by the feature

extractor, the easier the classification task becomes(2).

1.2 Approaches to Classifier Design

The approaches used to design automatic pattern

recognition systems can be divided into three categories(l).

These categories are template matching, decision theoretic

methods, and syntactic recognition. Template matching is

based on the idea of comparison of input samples to a set of

stored templates which represent each of the possible

classes. The decision theoretic techniques attempt to

formulate a set of classification rules which are defined by

a function of the sample features. The third technique,

syntactic pattern recognition, suggests that the sample

patterns can be represented using a hierarchical structure

present in the data. Each of these methods, while utilizing ' "

different procedures, results in some form of decision rule

for data classification.

The template matching approach is based on a comparison

technique. That is, an unknown sample is compared to a set

... o
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of templates stored in the system until a match is obtained.

An application where templace matching has been utilized

successfully is that of character recognition(l). By

limiting the form of the characters under consideration,

such as typed characters of uniform size, the problem can be p

reduced to a manageable form. Typically, a set of

measurements which allow unique representation of each

character allowed are available to the system. Then, an

input sample(character) is examined and the same set of

measurements are recorded. As a result, all that is

necessary to classify the sample is to compare the IL

measurements obtained to those stored in the system until a

match is found. Clearly, this technique places exact

restrictions on the samples under consideration(l). Also, L_-

if the number of characters allowed is very large the

storage requirements may be burdensome and the time required

to search for a match will be excessive.

The decision theoretic approach may be subdivided into

either deterministic or probabilistic techniques. The
I

deterministic techniques utilize analytic functions to

provide a functional description of the decision rule(2).

As an example of a deterministic pattern classifier,

consider the 1-nearest neighbor pattern classifier. The

nearest neighbor classifier finds the nearest labeled

sample(i.e. of known class) using a distance measure. The

distance measure can be of varying type; the Euclidian
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distance is one commonly used. Once the nearest neighbor

has been found, the sample pattern is assigned to the class

of this closest neighbor. Ties are resolved arbitrarily.

The probabilistic mathematical techniques utilize the

statistical properties of the pattern classes to achieve a

decision rule(2). A probability density function describing

the distribution of the class is obtained and used to

formulate the decision rule. One example of this method is

the Bayes classifier. The Bayes classifier is typically

used when the density functions are assumed to be
I.

multivariate normal (i.e. the data is normally

distributed)(1). The mean and covariance matrix

corresponding to the classes under consideration are

obtained by either direct calculation or an approximation

technique. With these parameters, the normal density

function is completely defined. The density function for

each class is then evaluated for the sample pattern under

consideration, these values are combined with the

probability of occurrence of each class, and the sample is

then assigned to the class for which the resultant value is

a maximum. As with the nearest neighbor classifier, ties are

resolved arbitrarily. The mathematical techniques are

generally not as restrictive as those of the template

matching method. Nevertheless, these techniques are also

dependent upon the application considered.

L

A .t~ . .
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The syntactic approach to the pattern recognition problem

utilizes the structure existing in the sample classes.

Formal language theory is applied to describe the levels of

structure present in terms of a particular grammar. Of

course, this approach presupposes the existence of some form

of recognizable structure. As a result, syntactic

techniques are best applied to problems in which the

structure present can be characterized in some concise form.

Syntatic techniques have been used in pictorial pattern

recognition as well as in other areas. Of the three

approaches discussed, the syntactic approach is the least

developed. But, its use has been receiving increased

attention recently. The theory of syntactic pattern

recognition is covered extensively in (3), and (1,2) provide

an introductory look at the topic.

The work presented here considers mathematical methods

for classifier design. More specifically, an investigation

into algorithms based on fuzzy set theory is presented with

comparisons to their crisp analogs. The algorithmic pattern

recognition techniques discussed are deterministic in

nature, except for one probabilistic method based on Bayes

decision theory. Of course, since the lines which separate

* the three approaches are not hard and fast, it is important

to be able to draw from any of the three when developing an

effective classifier.
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1.3 Introduction to Fuzzy Sets

The theory of fuzzy sets was developed by Lofti Zadeh in

1965(4). The impetus behind the introduction of the fuzzy

set was to provide a means of defining categories which are

inherently imprecise(S). While it is a relatively new

concept, the theory is a natural extension of traditional

set theory. Since the introduction of fuzzy set theory, the

terms "hard" and "crisp" have been used to describe sets

conforming to the traditional set theory. Although it has

taken some time for its use to spread, the theory of fuzzy

sets has been applied successfully to a variety of areas.

These include medical diagnosis, linguistic modelling,

artificial intelligence, and scene analysis as well as

pattern recognition. The results achieved in these

applications are useful and have stimulated further research

in the area.

Prior to the introduction of fuzzy sets, probability

theory was the primary mathematical means of describing

imprecision. Although many people still believe that

probability theory is all thai- is needed to handle problems

which are inherently imprecise, failure to examine all

possible methods of achieving a solution will very likely
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lead to a less than optimal solution. Upon comparison of

the imprecision, or fuzziness which is modelled by fuzzy set

theory to the randomness which probability theory models so

well, it should be clear that the two theories are distinct.

Consider the statement: "You are nearly correct". Using

probability theory this would be modelled as: "There is an

XX possibility that you are correct."(X could be something

near 90). But the intent of such a statement is to say that -

the response you supplied is close to the correct one, not,

as probability theory suggests, that there is a good chance

you are correct. Alternatively, fuzzy set theory models the

statement as: "The correctness, on a scale from zero to one,

of your answer is X."CX could be near 0.9). Now this is the :2
true intent of the statement given above. Thus, the

difference between fuzzy modelling and stochastic modelling

is that fuzzy set theory handles imprecision easily whereas

probability'theory is best suited to random processes(5).

So, it is not a matter of which theory is best, but instead

which theory is best suited to the problem at hand.

The basis of fuzzy set theory is that set elements may

take on a membership other than complete

memb/rshlp(membership=l) or non-membership(membership=0).

Thus, as is often the case in real world situations, a set

may consist of elements with varying degrees of similarity.

measure of similarity is assigned via a membership

function. In traditional, or "crisp" set theory the

9.

~ -__
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membership function values are restricted to zero or one.

But, in fuzzy set theory an element's membership function

may take on any value in the closed interval [ 0,1 ] Thus

more flexibility results by using fuzzy set theory to

describe classes and their members. For a more complete

discussion of the theory of fuzzy sets, the reader is

referred to (6) which provides an excellent and thorough

presentation of the theory.

The following examples illustrate the usefulness of fuzzy

sets for describing classes which exist in the world.

Consider the class of all young people in the world.

Clearly, we must define what attribute a person must possess

to be considered young before determining who belongs in the L

class. One might say that a person is young if they are

less than some particular age. Then, using crisp set theory

to describe this class we simply say that everyone less than

the given age is young and all others are not. On the other

hand, using fuzzy set theory we assign a membership in the

class of young people to all persons considered. Thus,

using age to define young people, a five year old person

might have a membership of 0.95 in the class while a ninety

year old person might have a membership of 0.1 in the class.

Clearly, the latter description provides more information to

the observer and as a result should be more useful to

someone concerned with young people of the world. As

another illustration, consider the classic example of the

" . .
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set of all bald persons. As before we must define what

attribute a person must posses to be considered a member of

the set. Should a person whose hairline has receded a

couple of inches be a member? Of course a person with no

hair will be a member. But where do we set the defining

line for baldness? Without going any further with this

example it should be clear that crisp set theory will not

provide much help in identifying the set of bald people

unless we all can agree at what stage a person is considered

bald.

With just the two examples presented above it should be

clear that there are many cases in the world where the

models based on crisp set theory fall short of providing a

useful description of things, people, or places. So, as

Professor Zadeh proposed, the use of fuzzy set theory may

indeed perform better in these cases.
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CHAPTER 2

FUZZY CLUSTERING

2.1 Introduction

As discussed in chapter one, evaluation of large data

sets can be a difficult task simply because of the volume of

data present. One way of reducing the data is to use a

clustering procedure to extract information from the raw

data. Roughly speaking, clustering procedures yield a data

description in terms of clusters, or groups of data points

which possess some form of similarity(2).

When the clustering procedures are based on crisp set

theory a sample in the data set must be classified as

belonging to one and only one cluster(l). This constraint

is imposed by the mathematical model based in crisp set

theory. As an example, consider the case of a set of data

samples taken from three classes, one being a hybrid of the

other two classes resembling each non-hybrid to the same

degree. If we have no prior knowledge of the actual number
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of classes present and partition the data into two clusters,

the following should occur. If the two non-hybrid classes

are separable, samples taken from these classes will be

placed in different clusters. But, what of the samples from

the hybrid class? These samples will likely be divided into

the two classes resulting in clusters which are distorted

from their natural shape and density. In addition, the

samples from the hybrid data will be lost amongst the other

samples with nothing to indicate a difference in their

origin.

Alternatively, a fuzzy clustering technique does not have

the same constraint as that imposed by crisp set theory.

Instead, samples are assigned membership in all classes(5).

Returning to the example problem described above, the two

non-hybrid classes will have high membership(close to one)

in one cluster and low membership(close to zero) in the

second cluster. Of course, each non-hybrid will have high

membership in different clusters. Now, consider the samples

from the hybrid class. Since they do not resemble one

non-hybrid more than another they will be assigned

membership in each cluster very close to one-half. Thus,

these samples will be recognized as not belonging to one

cluster more than another, as they should be. This example

points out the essence of fuzzy clustering. That is, fuzzy

clustering procedures do not force a sample into one and

only one cluster. Instead, a sample's "degree of belonging"
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In a particular cluster can be interpreted via its

membership assignments.

In both cases of the example given above, as in most

clustering procedures, the technique in both crisp and fuzzy

methods is to assign individual data points to a cluster

such that the resulting clusters produce a natural grouping

of the data. Of course, we must define what is meant by a

natural grouping. Typically this is defined by a measure of

similarity between samples as well as a criterion for

evaluating the partition which results from the clustering

procedure(2). Thus, the choice of similarity measure and

criterion function in a clustering procedure strongly

influences the type of clusters obtained.

2.2 Similarity Measures

The similarity measure used in a clustering procedure

defines what mathematical properties of the data should be

used to identify clusters(5). Properties such as distance,

angle, curvature, symmetry, and intensity are some which may

be of interest. Clearly, no one measure of similarity will
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be universally applicable. Often the choice of one measure

over another is a subjective one, with considerations of

prior knowledge and ease of implemetation playing a role.

The most obvious measure of similarity between two

samples is the distance between them(2). Of course there

are several ways in which the distance between two points

can be defined. The Euclidian distance squared between two

sample vectors Xj and Zj

D2 (Xg-Zj)t (Xj-Zj)

is one commonly used measure of similarity, with a smaller

distance corresponding to a greater similarity. Use of the

Euclidian distance to test similarity in a clustering

procedure produces clusters which are hyperspherical(2).

The Malahanobis distance from a sample vector X# to a mean

vector M

D2 (CX-M) t C-' (Xg-M)

is a useful measure of similarity when the statistical

properties of the data are being considered( here C -; is

... .. . .
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the inverse covariance matrix of the sample data). This

similarity measure produces clusters which are

hyperellipsoids(2). Distance measures as a form of

comparison are by no means the only useful similarity

measures.

A nonmetric similarity measure between two vectors X and

X*Z

S:_L.

II XII II Zl.

represents the cosine of the angle between the two vectors X

and Z. This similarity measure is a maximum when the

vectors are oriented in the same direction with respect to

the origin. Thus, this measure is useful when clusters tend

to align themselves along the principle axis(l).

The similarity measures given above are some of those

commonly used in clustering problems. Of course many more

similarity measures exist, some of which are discussed in

(1,2,5). For the pattern recognition algorithms considered

in this report, the Euclidian distance measure is used.

This similarity measure was chosen since on the whole very

little prior knowledge concerning the types of clusters to
• - .°
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expect in the test data was available. In addition, by

using this measure exclusively, variability in results due

solely to the use of different distance measures was

eliminated.

p.

2.3 Criterion Functions L

- V.

In order to obtain the set of K clusters, or subsets of a

sample set which are the "most desirable", we need to define

a criterion function which measures the quality of the

clusters found. The "most desirable" clusters are those

which contain samples which are somehow more similar than

samples contained in a different cluster(2). Thus, once

such a criterion function is defined, partitioning the data

such that the criterion function is an extreme(maxima or

minima) will produce the "most desirable" clusters

obtainable under the given criteria. Of course, the result

does not necessarily represent the naturally occurring

clusters, if any, in the set of samples. The extent to

which the clusters obtained represent the naturally

occurring clusters is dependent upon the particular choices

for a similarity measure and criterion function(2).

L . . : - , _ . . . . .. .
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The most widely used clustering criterion function is the

sum-of-squared-error criterion(I). Let n1  be the number of

samples in a proposed cluster and let mi be the mean of

those samples,

S

I n:
mi E - xj..

nij= 1  "

The sum of squared errors is defined as,

k nj
J. = E lixi-m "112

j=0 i=0

where K is the number of clusters and nj is the number of

vectors in the jth cluster. The interpretation of this

criterion function is as follows. For a given cluster, the

mean vector mj is the best representative of the samples in

the cluster in the sense that it minimizes the sum of

squared lengths of the "error" vector IIxf-mill (2). As a

result, J. measures the total squared error incurred by

representing the n samples by the K cluster centers. Then

the optimal partition as defined by this criterion function

is one which minimizes J. Clusters resulting from the use

of the sum-of-squared-error as the criterion function are

often called "minimum variance" partitions(2). The fuzzy

-p€
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analog to the sum-of-squared-error criterion is very much

like the one given above. The difference is that the

distance measure for each vector x is multiplied by x's

membership in the class raised to the power m, where m is a

weighting factor usually taken as two.

The clustering problems best suited to the use of J. are

those which form well separated compact "clouds". One

problem arising from the use of this criterion when there is

a large difference in the number of samples in different

clusters is that the large clusters may be split because of

the small reduction in squared error being multiplied by

many times in the sum(5). Situations producing such a

problem often occur when there exists single points well

away from the more dense regions of the cluster.

There are other useful criterion functions, several of

which are discussed in (2). The common feature of the

criterion function presented above as .well as those in (2)

is that they model the clustering problem as one in which

the samples form well separated "clouds" of points. While

this model may be reasonable in some cases it does not

represent the majority of the clustering problems which are

of concern. As a simple example consider the case of the

"cloud within a cloud", a dense cluster embedded in the

center of a diffuse cluster. Clearly, utilizing a criterion

which uses the model described above will not likely produce
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a useful partition. Nevertheless, criterion such as the

minimum squared error function are often used as a starting

point, then a different criterion function must be devised

if the results are not meaningful.

2.4 Clustering Methods -

2.4.1 Hierarchical Methods

-L..

This group of methods were originally utilized in the

field of biological taxonomy where individuals are grouped

into species, species into genera, genera into families, and - --

so on(2). Hierarchical clustering contains both

agglomerative(merging) and divisive(splitting) techniques.

In both cases the procedure is to form new clusters by

reallocating membership of one point at a time, based on a

given similarity measure(5). Thus, the resulting clusters

form a hierarchy of nested clusters. Because of their

conceptual and computational simplicity, hierarchical

methods are among the best known(2). They are suitable for

use when the underlying structure of the data is

dendritic(S). An introductory look at the methods of
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hierarchical clustering is presented in (2). In addition, a

discussion of fuzzy hierarchical clustering techniques is

presented in (7).

2.4.2 Graph-Theoretic Methods

In this group the set of samples is regarded as a node

set, and edge weights between pairs of nodes can be based on

a similarity measure between pairs of nodes(5). The

clustering criterion may be some measure of connectivity

between groups of nodes. Breaking of edges in a minimal

spanning tree to form subgraphs is an often used

graph-theoretic clustering strategy(5). The benefit of

graph theoretic techniques is that they allow consideration

of more intricate structures than the isolated "cloud-like"

clusters produced by the mathematics of normal mixtures and

minimum-variance partitions(2).

2.4.3 Objective Function Methods

L_.

+"'.
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These methods generally allow the most precise(but not

necessarily more valid) formulation of the clustering

criterion(5). Objective function methods make use of

criterion functions, such as those described above, as a

measure of each clustering candidates "desirability". Thus, S

the optimum clusters under these methods are those which

produce local extrema of the objective function(5). The

K-means algorithm described in the following section is of

this type.

2.5 K-means Algorithm

This algorithm, in both the fuzzy and crisp versions is

based on the minimization of the within-group sum of squared

error criterion. Both the fuzzy and crisp algorithms are

given below. The crisp K-means algorithm is included to

provide a comparison between fuzzy and crisp clustering

results. The notation used in the algorithms is as follows.

K number of clusters specified

n a number of data samples
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n, 5 number of sample vectors in the ith cluster

X} _ the set of n sample vectors

m a weighting factor

Ul a membership function array for the lth iteration

ugj a the membership of the ith vector
in the ith cluster

(VI) a the set of K fuzzy cluster centers
for the Ith iteration

[Z ) = the set of crisp cluster means .

for the Ith iteration

11AI1 any matrix norm(for example the max of
the absolute values of all elements)

The procedures for the fuzzy K-means algorithm are,

BEGIN
Set K, 2SK<n
Set c , gkO
Set m, l;m<-
Initialize U°

Initialize 1=0
DO UNTIL( IIU-U-II < £ )

Increment 1
Calculate IV#') using 2.5a and U -'
Compute U' using 2.5b and (Vil)

END DO UNTIL
END

n
E; (ufj)nxj

j=l
2.5a V, =

n
E- (u#J)O

j=l ,-

1/11 xj-v, Il --t

2.5b uj =,
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K
£C 1/11xj-vkI )I/(w- 1 )3-

k=1

The crisp K-means algorithm is as follows.

BEGIN
Set K,2 K5 n
Initialize (Z o) by arbitrary assignment
as vectors in the sample set
Initialize 1=0
DO UNTIL ( lIZ, -Zj'-'I <, V i= 1,2,...,K )

Increment I
Assign each xc(X) to the ith cluster if
IIx-Zj-Z'<lx-Z,2'IIl V i=1,2, ... K
Compute (Z}l) using 2.5c

END DO UNTIL
END

1 n"
2.5c Z = - xj

n1 j-

As the statements of the algorithms illustrate, both are

relatively simple procedures. Although neither of these

algorithms have a general convergence proof associated with

them, they both have been shown to provide useful

results(1,5). In the case of the fuzzy K-means algorithm, a

proof of convergence under certain conditions to a local

minimum of the within-group sum of squared error criterion

exists(5).
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While both algorithms are useful in determining the

existence of a set of K clusters in some data sets, the

correct choice of K is no straightforward task. Often the

data must be run for several values of K. Then the results

of all runs must be interpreted (usually by hand) to

determine the number of naturally occurring clusters, if

any. One advantage of the fuzzy K-means algorithm is that

the interpretation is eased by the availability of the

membership function array. When the memberships show most

samples with a high membership in only one cluster then this

suggests the choice for K which produced the results may

best represent the number of naturally occurring clusters.

The initialization steps required for these algorithms

are quite different. For the crisp K-means algorithm a set

of K initial cluster centers must be chosen. Usually a

random assignment will produce good results. Alternatively,

the fuzzy K-means algorithm requires a little more effort in

order to obtain useful results. The initial membership

function array can not in general be assigned arbitrarily.

One procedure for initialization of the array is to obtain a

crisp partition and then "fuzzify" it by changing each

vectors memberships so that they share membership among the

classes with their maximum membership in the class which the

crisp partition placed them(5).
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A great deal of research concerning the fuzzy K-means

algorithm has been conducted. Several individual as well as

joint efforts have been completed by James Bezdek and Joseph

Dunn(5,8,9,10). On the whole, as indicated by their

research results, the fuzzy K-means algorithm is a useful

tool for cluster analysis. Additional results and a

comparison between the fuzzy and crisp algorithms are given

in chapter four.

1
":& ?



* - ,* . - -' .- -- o

PAGE 26

FUZZY CLASSIFIERS

3.1 Introduction

While clustering procedures are utilized when the nature

of a set of unlabelled samples is being investigated,

classification routines have a different purpose. Given a

set of unlabelled samples, a classification algorithm should

be able to determine their correct classification. There

are several approaches to the classifier problem, as

discussed in chapter one. In this chapter the nearest
L

neighbor and nearest prototype classifiers are considered.

Both the nearest neighbor and nearest prototype

classifiers utilize labelled samples and a distance measure

to determine classification. In the case of the nearest

neighbor classifier the labelled samples are used directly.

The nearest prototype classifier compares the samples of

unknown class to a set of prototypical samples representing

the possible classes.

3.2 Nearest Neighbor Classifiers
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The nearest neighbor classifiers require no preprocessing

of the labelled sample set prior to their use. The crisp

nearest neighbor classification rule assigns an input sample

vector y, of unknown classification, to the class of its

nearest neighbor(l). This idea can be extended to K nearest

neighbors with the vector y being assigned to the class

which is represented by a majority amongst the K nearest

neighbors. Of course, when more than one neighbor is

considered the possibility that there will be a tie among

classes which have a maximum number of neighbors in the

group of K nearest neighbors exists. One simple way of

handling this problem is to restrict the possible values of

K. For example, given a two class problem, if we restrict K

to odd values only no tie will be possible. Of course, when
L

more than two classes are possible this technique is not

useful. The means of handling the occurrence of a tie is as

follows. The sample vector is assigned to the class, of

those classes which tied, for which the sum of distances

from the sample to each neighbor in the class is a minimum.

Of course, this could still lead to a tie, in which case the

assignment is to the last class encountered amongst those

which tied, an arbitrary assignment. Clearly, there will be

cases where a vector's classification becomes an arbitrary

assignment no matter what additional procedures are included

in the algorithm.
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3.2.1 Crisp Nearest Neighbor Algorithm

Let N = {x1,x.....x.1 be a set of n labelled samples. The

algorithm is as follows.

BEGIN
Input y, of unknown classification
Set K, 1K:n
Initialize i="
DO UNTIL( K nearest neighbors found)
Compute distance from y to xi
IF (i S K ) THEN

Include x, in the set of K nearest neighbors L
ELSE IF ( xi is closer to y than

any previous nearest neighbor ) THEN
Delete farthest in the set of K nearest neighbors
Include x, in the set of K nearest neighbors

END IF
Increment i

END DO UNTIL
Determine the majority class represented in the set
of K nearest neighbors

IF (a tie exists ) THEN
Compute sum of distances of neighbors in each

class which tied
IF ( no tie occurs ) THEN
Classify y in the class of minimum sum

ELSE
Classify y in the class of last minimum found

END IF
ELSE
Classify y in the majority class

END IF
END

I .-

°
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3.2.2 Fuzzy Nearest Neighbor Classifier

I..-

While the fuzzy K-nearest neighbor procedure is also a

classification algorithm the form of its results differ from

the crisp version. The fuzzy K-nearest neighbor algorithm

assigns class membership to a sample vector rather than

assigning the vector to a particular class. The advantage

is that no arbitrary assignments are made by the algorithm.

In addition, the vector's membership values should provide a

level of assurance to accompany the resultant

classification. For example, if a vector is assigned 0.9

membership in one class and 0.05 membership in two other'

classes we can be reasonably sure the class of 0.9

membership is the class to which the vector belongs. On the

other hand, if a vector is assigned 0.55 membership in class

one, 0.44 membership in class two, and 0.01 membership in

class three then we should be hesitant to assign the vector

based on these results, although we can feel confident that

it does not belong to class three. In such a case the

vector might be examined further to determine its

classification. Clearly the membership assignments produced

by the algorithm can be useful in the classification

process.

.......................................
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The basis of the algorithm is to assign membership as a

function of the vector's distance from its K nearest

neighbors and those neighbors membership in the possible

classes. The fuzzy algorithm is similar to the crisp

version in the sense that it must also search the labelled

sample set for the K nearest neighbors. Beyond obtaining

these K samples, the procedures differ considerably.

3.2.2.1 Fuzzy Nearest Neighbor Algorithm

Let X= [x3 .x2 ..... x,) be the set of n labelled samples.

Also let u,(x) be the assigned membership of the vector x(to

be computed),and ugj be the membership in the ith class of

the jth vector of the labelled sample set.

BEGIN
Input x. of unknown classification
Set K, 1l:ln
Initialize il
DO UNTIL ( K nearest neighbors to x found )
Compute distance from x to x,
IF (i S K ) THEN

Include x1 in the set of K nearest neighbors
ELSE IF C xg closer to x than

any previous nearest neighbor ) THEN
Delete the farthest of the K nearest neighbors

- 1<
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Include xj in the set of K nearest neighbors
END IF

END DO UNTIL
Initialize i=1
DO UNTIL ( x assigned membership in all classes )7

Compute ul (x) using 3.2.2.1a below
Increment i

END DO UNTIL
END

K

E( 1/11 x- xJ1 .--I ))j~l

j=1

j L.

3.2.2.2 Physical Interpretation

The interpretation of the algorithm is given in terms of

the following example. As stated previously, selection of

the K nearest neighbors from the labelled sample set is t.

straightforward. So, with K=3 the example proceeds assuming

the 3 nearest neighbors of x are x 1 . x2 . and x3  The class

memberships for these three sample vectors are given as:

ugj = membership of jth sample in the ith class, j=1,2,3.

1t

r.I
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The distances of x from x,. x2,. and x3 are d,. da. and d3

respectively.

Now according to 3.2.2.1a,

u~l l /d,)2-- 1+ uf 2 (l/d 2 )
2 '--' + u, 3 (l/d 3 )2m-1

u, (x) =

3E(1l/dj ) 1/i- 1 i:.

j=l

L

Thus, the assigned memberships of x are influenced by the

inverse of the distances from the nearest neighbors and

their class memberships. The inverse distance serves to

weight a vector's membership more if it is closer and less

if farther from the vector under consideration. The

labelled samples can be assigned class memberships in one of

two ways. First, they can be given complete membership in

their known class and non-membership in all other classes.

The second alternative is to assign the samples membership

based on distance from their class mean or distance from

labelled samples of the other class or classes, and then use

the resulting memberships in the classifier. Both of these
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techniques have been used in this study and the results are

reported in chapter four. -

I-

3.3 Nearest Prototype Classifiers ;

These classifiers bear a marked resemblance to the

1-nearest neighbor classifier. Actually, the only

difference is that for the nearest prototype classifier the

labelled samples are a set of class prototypes whereas in

the nearest neighbor classifier we use a set of labelled

samples which are not necessarily prototypical. Of course,

the nearest prototype classifier could be extended to

multiple prototypes representing each class, similar to the

K-nearest neighbor routine. Nevertheless this study

considers only the 1-nearest prototype classifier in both a

crisp and fuzzy version. The prototypes used for these

routines are taken as the class means of the labelled sample

set.

3.3.1 Crisp Nearest Prototype Algorithm
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Let W= Z,. Za.... .Zk be the set of K prototype vectors

representing the K classes.

BEGIN
Input x, vector to be classified
Initialize i=1
DO UNTIL (distance from each prototype to x computed)

Compute distance from Z, to x
Increment i

END DO UNTIL
Determine minimum distance to any class prototype L....
IF ( tie exists ) THEN
Classify x as last class found of minimum distance

ELSE
Classify x as class of closest prototype

END IF
END

3.3.2 Fuzzy Nearest Prototype Algorithm

As above, let 1 = (ZR. Z2.....Zk) be the set of K prototypes

representing the K classes.

BEGIN
Input x, vector to be classified
Initialize i=1
DO UNTIL (distance from each prototype to x computed)
Compute distance from Z, to x
Increment i



PAGE 35

END DO UNTIL
Initialize j=1
DO UNTIL (X assigned membership in all classes) -
Compute uf(x) using 3.3.2a below
Increment i

END DO UNTIL
END

I/1 x - x I" -
3.3.2a uj(x)

K
V (1/11 x-xJllZ 1(.--1z)).

j=l

The difference between 3.3.Za and 3.2.2.1a is that

membership in each class is assigned based only on the

distance from the class prototype. This is because the

prototypes should naturally be assigned complete membership

in the class which they represent.
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CHAPTER 4

RESULTS AND CONCLUSIONS

4.1 Introduction

The results presented in this chapter were produced by

software implementation of the algorithms presented in

chapters three and four. The software was developed using -

Fortran 77 on a Perkin-Elmer 3220. In addition, UMC Core

Graphics support software was utilized to allow a geometric

interpretation of the two-dimensional clustering and

classification results.

4.2 Test Data
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Four labelled data sets were utilized to test the

algorithms. The data sets and their attributes are as

follows.

Data Set Number of Number of Number of features

name classes vectors per vector

IRIS 3 150 4

IRIS23 2 100 4 I .

TWOCLASS 2 242 4

LANDSAT 4 32018 4

L-4

The IRIS data is that of Anderson(11). This particular

data set has been utilized extensively by researchers in the

area of cluster analysis since 1936, when R.A. Fisher first

used it to illustrate the concept of linear discriminant

analysis(5). The data represents three subspecies of

irises, with the four feature measurements being sepal

length, sepal width, petal length, and petal width, all in

centimeters. There are fifty vectors per class in this data

set. The IRIS23 data set is a subset of the IRIS data. It
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includes classes two and three, the non-separable classes,

of the IRIS data.

The TWOCLASS data set is an artificially generated

normally distributed set of vectors. This data set was

included because classification results from a Bayes

classifier were available to use in the comparison. This

data set contains 121 samples per class.

The third data set is a set of images taken by Landsat-2

on April 22, 1981 and August 9, 1981. Features one and two

were produced in April and features three and four in

August. Features one and three were produced by identical

sensor types as were two and four. This data set was used

exclusively in the clustering evaluation. As with the

T WOCLASS data, results from a different clustering procedure

ran on this data was available for comparison. For

additional information concerning the data source refer to

(12). The clustering results available were produced by a

statistically oriented algorithm entitled SEARCH which is

also described in (12).

The IRIS data and TWOCLASS data sets were utilized in

evaluation of both the clustering and classification

a lgor i thins.

..........................
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4.3 Clustering Results and Computational Requirements

4.3.1 Clustering Results

As a basis for comparison the results of the fuzzy

clustering algorithm are reported as a crisp partition

wherein a vector is assigned to the cluster of maximum

membership. With these results, shown in Tables 1, la, and

lb. a comparison of the crisp and fuzzy algorithms can be

made. The percentages given in the tables indicate the rate

of correct classification, for individual classes and

combined results.

The results are presented in the form of confusion

matrices. These matrices are organized as follows. The

count of samples listed in each row are those which belong

to the corresponding class and the count of samples listed

in each column are those placed into the corresponding

cluster. Thus, the rows give the vectors in the

corresponding class and the columns give the resultant

cluster assignments.
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Consider first the results shown for the IRIS and

TWOCLASS data sets. In the case of the TWOCLASS data the

results are the same for both crisp and fuzzy clustering.

The results of the two clustering procedures do show a

difference for the IRIS data, although the difference in p

error rate is less than IX, hardly significant.

Next, examine the results shown for the LANDSAT data.

First of all, the numbers in the results of the SEARCH

procedure differ by a scale factor because they are reported

in terms of acreage whereas the other results are reported

in terms of pixel count. Comparing only the results of the

fuzzy clustering to the crisp clustering it should be clear

that the fuzzy K-means algorithm performed much better than

the crisp version. Actually, the only reason the crisp

algorithm's results show an overall rate of correct

labelling above fifty percent is because the majority of the

sample points are from a single class.

Now, if we compare the results of the fuzzy K-means

algorithm to those of the SEARCH algorithm the following

observations can be made. First of all the overall rate of

correct labelling for SEARCH is higher than that of the

fuzzy results. But, by examining the results of the

individual classes we can see that the fuzzy clustering . .

routine did better, on the average, for the individual

classes. In addition, while the SEARCH procedure Is
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considered unsupervised clustering, it does involve user

interpretation of intermediate results( a much larger number

of clusters), which is then given to the algorithm in terms

of desired cluster combinations so that the final cluster

count will be as specified, which in this case is four(12).

From the above results it should be clear that the fuzzy

K-means performs as well as, and in some cases better than

the crisp K-means algorithm.

4.3.2 Role of the Weighting Factor

The weighting factor (m) used in the fuzzy algorithms

influences the results of these algorithms in an interesting

manner. The results of the K-means algorithm when m is

varied over a range of values are presented in Tables 2 and

2a.

The first thing to notice from the results listed in

Table 2 is that the rate of correct classification Increases

without exception for both data setb as the value of m is

Increased over the range. In addition, as m is increased
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the resulting memberships become "fuzzier", as expected(S).

That is, on the average, the membership assignments given

are closer to 0.5, the region where it would seem the

membership of a vector would be more difficult to

distinguish. Nevertheless, in the empirical results

presented in Tables 2 and 2a, the "fuzzier" memberships do

not cause the error rate to increase, instead it decreases.

While these results are not conclusive, they do show that

the fuzzy K-means algorithm can outperform the crisp K-means

algorithm.

4.3.3 Computational Requirements

The computational requirements of the crisp and fuzzy

K-means algorith will now be considered. The number of

multiplications and additions are compared in the general

case and for a particular example. The count of

multiplications and additions for each algorithm are

reported in terms of the parameters listed below.

K a number of cluster specified

L



PAGE 43

N number of data samples

n a number of features per sample

Fuzzy Crisp

Multiplications KN(3+2n) Kn(2+N)

Additions 3KN(l+n) 2Kn(l+N)

Using the parameter for the IRIS data set, the following

particular example is given.

K 3

N 150

n =4 .

Fuzzy Crisp

Multiplications 4950 1824

Additions 6750 3624

Without a doubt there is a trade-off involved when using

the fuzzy K-means algorithm as opposed to the crisp K-means

°
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algorithm. But, the fuzzy K-means algorithm provides more

information, in the form of cluster memberships, than the

crisp K-means algorithm.

4.4 Classifier Results and Computational Requirements

As with fuzzy clustering, results of the fuzzy

classifications are reported in terms of a crisp partition

wherein a sample vector is assigned to the class of maximum L

membership. The classifications are obtained using the

"leave one out" technique. The procedure is to leave one

sample out of the data set and classify it using the

remaining samples as the labelled data set. This technique

is repeated until all samples in the data set have been

classified. In addition, in order to evaluate one technique

used to initialize memberships of the labelled samples used

in the classifier the IRIS23 data set was created by using

only class two and three of the IRIS data set. This was

necessary because the initialization technique will only

work on two class classification problems.

-71
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4.4.1 Results of Nearest Neighbor Classifiers

Before comparing the results produced by the nearest

neighbor algorithms, the types of labelling techniques used

for the fuzzy classifier are explained. Three different

techniques of membership assignment for the labelled data

are considered. The first method, a crisp labelling, is to

assign each labelled sample complete membership in its known

class and zero membership in all other classes. The second

technique utilized assigns membership based on the procedure

presented in (13). This technique works only on two class

data sets. The procedure assigns a sample membership in its

known class based on its distance from the mean of the

labelled sample class. These memberships range from one to

one-half with an exponential rate of change between these

limits. The sample's membership in the other class is

assigned such that the sum of the memberships of the vector

equals one. A more detailed explanation of this technique

is given in (13). The third method considered assigns

memberships to the labelled samples according to a K-nearest

rule. The K(not K of the classifier) nearest neighbors to

each sample (x) are found and then membership in the known

class i is assigned according to the following equation.

- - .-..- .~ . .
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u (x) 0.51 + (n /K)*0. 49

Membership assignments in the remaining classes are

according to( C number of classes), :

uj(x) (nj/K) *0.49 j 12.. .. C ji

The value nj is the number of the neighbors found which

belong to the ith class and the value nj is the number of the

neighbors found which belong to the ith class. This method

attempts to "fuzzify" the memberships of the labelled

samples which are in the class regions which intersect in

the sample space and leave the samples which are well away

from this area with complete membership in the known class. -

As a result, an unknown sample lying in this intersecting

region will be influenced to a lesser extent by the labelled

samples which are in the "fuzzy" area of the class boundary.

This initialization technique would work better on the

problem of the "cloud within a cloud" discussed in section

2.3.

Thus, with these three initialization techniques three

sets of results of the fuzzy K-nearest neighbor classifier

are produced.



PAGE 47

These results are presented in Tables 3 and 4. Upon

comparison of the results of the crisp classifier and the -

fuzzy classifier with crisp initialization we can see that .

on the average these procedures have equal error rates. In

addition, the fuzzy classifier which uses the second

initialization technique described produced nearly equal

results. Although not reported in the tables, the results

of this fuzzy classifier using the membership assignment

rule described in (13) did not produce memberships for the

misclassified vectors which suggest they actually belong do

a different class. Instead this second initialization

technique causes an overall reduction in the values of

memberships assigned with most of the samples given majority

memberships less than 0.7. But the nearest neighbor -

initialization technique does seem to produce membership

assignments which give an indication of degree of

correctness of classification.

Examining the results given in Table 4 for the K-nearest

neighbor classifier with nearest neighbor sample membership

initialization, the following observations can be made.

First of all, the results show a somewhat lower overall

error rate. But, more importantly, the number of

misclassified vectors with high assigned membership in the

wrong class is quite small for certain choices of KINIT. In

addition, the correctly classified samples were given
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relatively higher membership in their known class than in

other classes.

As a final comparison, consider the results of the Bayes

classifier for the TWOCLASS data. Running a ten percent

jacknife procedure( Taking ten percent of the samples as

test data and the remaining as training data, classifying

these and then repeating the procedure until all samples

have been used as test samples.) and assuming equal apriori

probabilities for both classes, the Bayes classifier

misclassified twenty of the samples. Clearly, dependent on

the value chosen for K, the fuzzy nearest neighbor

classifier can perform as well as a Bayes classifier.

4.4.2 Nearest Neighbor Computational Requirements

The computational requirements of the crisp and fuzzy

classifiers are now considered. The number of

multiplications and additions required to classify a sample

are considered. The parameters which influence the number

of multiplications and additions required are as follows.

a



PAGE 49

C a number of classes

K a number of neighbors used to classify

N a number of labelled samples used

n number of features per sample vector

Fuzzy Crisp

Multiplications nN+C(2K+I) nN

Additions 2nN+K+2CK 2nN+2K+CK+C-1

.L

Using the parameters for the IRIS data set and setting

K=3, the following particular example is given. i]
N = 149

n= 4

Fuzzy Crisp

Multiplications 617 596

Additions 1213 1209
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As this example illustrates, there is little difference

in the computational requirements of the crisp and fuzzy

K-nearest neighbor algorithms.

4.4.3 Results of Nearest Prototype Classifiers I
L. -.

The 1-nearest prototype classifier in both the crisp and

fuzzy versions are the quickest and simplest of the

classifiers considered. The reason is as follows. In both

versions of the 1-nearest prototype algorithm, an unknown

sample is compared to one prototype per class as opposed to

the K-nearest neighbor algorithms wherein an entire set of

labelled samples representing each class must be compared

before the "K" nearest are obtained. The results reported

in Table 5 show that the fuzzy nearest prototype classifier

and the crisp nearest prototype classifier produced

equivalent results. But, by looking at the memberships of

the misclassified samples In terms of the number with

membership greater than 0.7 in the wrong class, given in

Table 6, It is clear that these memberships do provide a

useful measure of level of confidence of classification.

Further, the number of correctly classified samples with
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memberships in the range between 0.5 and 0.7 is small

compared to the number of correctly classified samples. L

This means that most of the correctly classified samples

have membership in the correct class greater than 0.7.

Thus, we can be assured based on the memberships assigned

that the samples are correctly classified.

4.4.4 Nearest Prototype Computational Requirements

The computational requirements of the two classifiers are

examined below. The number of multiplications and additions

required for classification of a sample is given in terms of

the parameters defined below.

C a number of classes

n s number of features per vector

Fuzzy Crisp

Multiplications C(2+n) Cn

Additions C(2n+1) 2Cn
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As with the previous comparisons, a particular example is

given using the IRIS data.

C 3

n =4

Fuzzy Crisp

Multiplications 18 12

Additions 27 24

As with the nearest neighbor classifiers, there is little

difference in the computational requirements of the crisp

and fuzzy 1-nearest prototype classifiers.

4.5 Conclusions

The fuzzy K-means algorithm considered is a viable

alternative for use In clustering problems. While

.4_
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considerable research concerning this algorithm has already

been conducted, the role of the weighting factor has not

been investigated sufficiently. The results reported above

indicate that the effect of using values higher than two for

the weighting factor deserves further investigation.

The fuzzy K-nearest neighbor and fuzzy 1-nearest

prototype algorithms developed and investigated in this

report show useful results. In particular, concerning the

fuzzy K-nearest neighbor algorithm with fuzzy k-nearest

neighbor labelled sample membership assignments, the

membership assignments produced for classified samples tend

to possess desirable qualities. That is, an incorrectly

classified sample will not have a membership in any class

close to one while a correctly classified sample does

possess a membership in the correct class close to one. The

fuzzy 1-nearest prototype classifier, while not producing

error rates as low as the fuzzy nearest neighbor classifier,

also seems to produce membership assignments which are

desirable.

Clearly, the results reported herein indicate that the

fuzzy pattern recognition algorithms considered in this

research are useful and should be further investigated.

-. ,. , . . .
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Table 1

CLUSTERING RESULTS - IRIS data

Four Features

Fuzzy K-means Crisp K-means

1 2 3 1 2 3

1 so 0 0 100% 1 50 0 0 100%

2 0 47 3 94% 2 0 48 2 96X

3 0 13 37 74% 3 0 14 36 72X

Overall Correct rate 89.3X Overall correct rate 89.3%

Features Three and Four

Fuzzy K-means Crisp K-means

1 2 3 1 2 3

1 50 0 0 100% 1 50 0 0 1002

2 0 49 1 982 2 0 48 2 96%

3 0 7 43 86X 3 0 7 43 86X

Overall correct rate 94.72 Overall correct rate 94.0X

,-..
*. . . . . . . . . .. . . . . . . . . . . .- ~ . .. .-. . . . . .
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Table la

CLUSTERING RESULTS - TWOCLASS data

Four Features

Fuzzy K-means Crisp K-means

1 2 1 2

1 114 7 94.2% 1 114 7 94.2%

2 15 106 87.6% 2 15 106 87.6% -

Overall correct rate 90.9% Overall correct rate 90.9%

Features Three and Four

Fuzzy K-means Crisp K-means

1 2 1 2

1 114 7 94.2% 1 114 7 94.2%

2 15 106 87.6% 2 15 106 87.6%

Overall correct rate 90.9% Overall correct rate 90.9%
S
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Table lb

p)
CLUSTERING RESULTS - LANDSAT data(four features)

Fuzzy K-means

1 2 3 4

1 11151 2951 2728 193 65.5%

2 3178 5054 723 11 56.4%

3 404 804 3429 14 73.3%

4 157 43 413 762 55.4%

Overall correct rate 63.7%
L ..

Crisp K-means

1 2 3 4

1 14267 1463 315 978 83.3%

2 5904 1575 1309 178 17.5%

3 2370 440 1481 363 31.8%

4 1254 30 38 53 0.3X

Overall correct rate 54.3%

SEARCH

1 2 3 4

1 9143 1165 230 3 87X

2 2088 3503 59 0 62%

3 380 1158 1409 0 48%

4 38 155 267 368 44%

Overall correct rate 72%
op•
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Table 2

Result of Varying the Weighting Factorm)

Vectors Number of vector's membership in range

misclassified (in class of maximum membership)

> 0.6 > 0.7 > 0.8 > 0.9

m T I T I T I T I T I

1.4 22 17 18 15 13 14 8 12 4 7

1.5 22 17 17 15 11 12 5 9 2 5

1.6 22 17 17 14 9 12 4 6 1 1

1.7 22 17 16 14 7 10 2 5 1 0

1.8 22 17 16 13 5 8 2 2 0 0

1.9 22 16 14 13 4 5 1 0 0 0

2.0 22 16 10 8 4 5 1 0 0 0

2.1 22 16 9 8 2 2 1 0 0 0

2.2 22 16 9 8 2 0 0 0 0 0

2.3 22 16 8 6 2 0 0 0 0 0

2.4 21 15 7 6 2 0 0 0 0 0

2.5 21 15 7 4 1 0 0 0 0 0

2.6 21 15 6 3 1 0 0 0 0 0

2.7 21 15 4 1 1 0 0 0 0 0

2.8 21 15 4 0 1 0 0 0 0 0

2.9 20 15 4 0 0 0 0 0 0 0

3.0 20 15 4 0 0 0 0 0 0 0

Abbreviations: T-TNOCLASS data I-IRIS data
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Table 2a

Result of Varying the Weighting Factor(m)

Vectors Number of vector's membership in range

misclassified (in class of maximum membership)

> 0.6 > 0.7 > 0.8 > 0.9

m T I T I T I T I T I

3.1 20 15 3 0 0 0 0 0 0 0

4.0 20 14 1 0 0 0 0 0 0 0

6.0 19 13 0 0 0 0 0 0 0 0

7.0 19 13 0 0 0 0 0 0 0 0

8.0 19 13 0 0 0 0 0 0 0 0 .

10.0 19 12 0 0 0 0 0 0 0 0

20.0 19 11 0 0 0 0 0 0 0 0

30.0 19 11 0 0 0 0 0 0 0 0

Abbreviations: T-TWOCLASS data I-IRIS data
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Table 3

Results of K-nearest Neighbor Classifiers

Number of Misclassified vectors

Crisp Fuzzy-(l) Fuzzy-(2) Fuzzy-(3)

K I T I I T I T I" I T I"

I
1 6 26 6 6 26 6 26 6 6 26 6

2 7 26 7 6 26 6 21 6 6 21 6

3 6 21 6 6 22 6 21 7 5 19 6

4 5 20 5 6 19 6 20 7 5 20 5

5 5 20 5 5 21 5 20 7 4 19 4

6 6 19 6 5 18 5 206 4 20 4

7 5 19 5 5 21 5 18 6 4 19 4

8 7 21 7 6 18 6 20 6 4 20 4

9 6 21 6 4 21 4 18 5 4 18 4 - --

Notation and Abbreviations: K-number of neighbors used
I-IRIS data(four features)
T-TWOCLASS data(four features)

IP-IRIS23 data(four features)
(1)-crisp initialization
(2)-exponential initialization
(3)-fuzzy 3-nearest neighbor

initialization

1~



PAGE 60

Table 4

Results of Fuzzy K-nearest neighbor classifier,

with fuzzy KINIT-nearest neighbor initialization

KINIT

1 3 5 7 9

K I T I T I T I T I T

1 6-3 26-15 6-4 26-17 6-4 26-18 6-5 26-18 6-5 26-18

2 6-4 23-17 6-4 21-13 6-4 23-14 6-4 22-13 6-4 22-11

3 5-4 20-12 5-4 19-12 5-4 21-12 5-5 21-10 6-5 23-10

4 5-4 17-12 5-4 20-11 5-4 19-10 5-4 19-10 5-4 19-9
L.

5 4-4 16-11 4-4 19-11 5-4 19-10 5-3 20-11 5-3 19-10

6 4-4 20-10 4-4 20-11 4-4 20-11 4-3 21-9 4-3 20-8

7 4-3 17-9 4-4 19-10 4-3 20-9 4-3 20-8 4-3 20-8

8 4-3 17-9 4-3 20-9 4-2 20-9 4-2 20-8 4-2 20-8

9 4-3 18-8 4-3 18-8 4-2 21-8 4-2 21-9 4-2 21-8

Abbreviations: I - IRIS data(four features)

T - TWOCLASS data(four features)

Note 1: Columns give results for the values of KINIT(the
K used to initialize the labelled samples
memberships) shown. Rows give results for values
of K in the K-nearest neighbor algorithm

Note 2: Table entries are interpreted as: X-Y indicates
X misclassified vectors with Y of the X given
membership in the wrong class greater than 0.7.,
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Table 5

Results of the 1-Nearest Prototype Classifier

IRIS data

Four Features

Crisp Fuzzy

1 2 3 1 2 3

1 50 0 0 1 50 0 0

2 0 45 5 2 0 45 5

3 0 7 43 3 0 7 43

Features Three and Four

Crisp Fuzzy

1 2 3 1 2 3 L

1 5o 0 0 1 50 0 0

2 0 48 2 2 0 48 2

3 0 4 46 3 0 4 46 S

TWOCLASS data

Four Features Features Three and Four

Crisp Fuzzy Crisp Fuzzy

1 2 1 2 1 2 1 2

1 113 8 1 113 8 1 113 8 1 113 8

2 12 109 2 12 109 2 12 109 2 12 109

S-.•



- . . . -,

PAGE 62

Table 6

Fuzzy Classifier Membership Assignments

IRIS data TWOCLASS data

A B A B

Misclassified samples with 1 1 3 3
membership assigned > 0.7

Samples with membership 15 15 36 36 L
assigned > 0.5 and < 0.7

Abbreviations: A - Four feature used

B - Features three and four used L

Note: The first row in the table above gives the
number of misclassified vectors in the
indicated range and the second row gives
the number of all classified samples in the
given range. The intent is to illustrate
that very few samples are misclassified
with high membership, while very few
correctly classified samples are given
membership in their class in the "fuzzy"
region between 0.5 and 0.7.
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APPENDIX A

PROGRAM LISTINGS

This appendix includes the documented source code which
was implemented for the research.
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$OPTIMIZEC A DRIVER ROUTINE WHICH ALLOWS SELECTION OF ONE OF THREE

C DATA SETS, AND THEN SELECTION OF ONE OF SEVEN PATTERN
C RECOGNITION ALGORITHMS TO BE RAN ON THE DATA SET
C CHOSEN. AFTER THE CHOSEN ALGORITHM HAS COMPLETED
C THE USER IS PROMPTED FOR CHOICES OF INTERPRETIVE
C ALGORITHMS TO RUN USING RESULTS PRODUCED BY
C THE PATTERN RECOGNITION ALGORITHM CHOSEN.
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: JUNE 84 7.-
C
C FILENAME: MGFUZZY.FTN
C
C CALLING SEQUENCE: RUN MGFUZZY
C
C DATA FILES AVAILABLE:
C
C IRIS.DAT - 150 SAMPLES WITH FOUR FEATURES PER SAMPLE,
C 50 SAMPLES PER CLASS
C
C TWOCLASS.DAT - 242 SAMPLES WITH FOUR FEATURES PER
C SAMPLE, 141 SAMPLES PER CLASS
C
C IRIS23.DAT - 100 SAMPLES WITH FOUR FEATURES PER SAMPLE,
C 50 SAMPLES PER CLASS( A SUBSET OF IRIS.DAT)
C
C PATTERN RECOGNITON SUBROUTINES AVAILABLE C BY TYPE )z
C
C DESCRIPTION FILENAME
C_-__""
C
C I - CRISP K-MEANS CRSKMEAN.FTN
C 2 - FUZZY K-MEANS FUZKMEAN.FTN
C 3 - FUZZY K-HEAREST NEIGHBOR FUZHEARN.FTH
C 4 - FUZZY 1-NEAREST PROTOTYPE FUZPROTO.FTN
C 5 - FUZZY K-NEAREST NEIGHBOR; FUZNEARN.FTN
C FUZZY INITIALIZATION
C A - VIA "FZIFY" ; MGFZIFY.FTN
C DEVELOPED BY D. HUNT
C B - VIA "FZFYHN"; MGFZFYNN.FTN
C A NEAREST NEIGHBOR TECHNIQUE
C 6 - CRISP K-NEAREST NEIGHBOR CRSIPNN°FTN
C 7 - CRISP 1-NEAREST NEIGHBOR CRISPHP.FTH
C
C NOTE: CLASSIFIER ALGORITHMS (3 THROUGH 7) USE
C THE "LEAVE ONE OUT" METHOD TO PRODUCE A
C CLASSIFICATION. THE METHOD IS SIMPLY TO
C LEAVE THE CURRENT SAMPLE BEING CLASSIFIED
C OUT OF THE LABELLED SET USED TO
C DETERMINE CLASSIFICATION.
C
C
C INTERPRETATIVE SUBROUTINES AVAILABLE:
C
C DESCRIPTION FILENAME

C
C I - COMPUTE HARD PARTITION USING MGCMTRIX.FTN
C MAXIMUM CLASS MEMBERSHIP,
C RESULT IS A CONFUSION MATRIX
C 2 - OUTPUT THE MEMBERSHIP FUNCTIONS, MGMEMBPR.FTN
C A - FOR ALL SAMPLES OF DATA SET
C B - FOR ONLY THE MISCLASSIFIED
C SAMPLES OF DATA SET
C 3 - COMPUTE LEVEL SETS USING ALPHA MGCUTSET.FTN
C AND BETA AS UPPER AND LOWER
C CUTOFFS, RESPECTIVELY. BASICALLY,
C A LEVEL SET IS DEFINED TO INCLUDE
C THOSE SAMPLES WHICH HAVE MEMBERSHIP
C IN THE DESIRED RANGE, EITHER GREATER
C THAN ALPHA, LESS THAN BEAT, OR IN-
C BETWEEN ALPHA AND BETA
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C 4 - OUTPUT A 2-D PLOT OF RESULTS, MGDOPLOT.FTN
C A - RESULTANT CLASSIFICATION OF
C EACH SAMPLE BY CLASS
C B - MEMBERSHIP FUNCTIONS ASSIGNED
C IN ONE CLASS
C C - SAMPLES WHICH ARE A LEVEL SET
C FOR A GIVEN CLASS
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C LOGICAL UNITS USED:
C
C 11 - TO ACCESS A DATA FILE, OPEN ONLY WHEN
C ACCESSING THE DATA SET AND THEN NO
C LONGER USED UNTIL ANOTHER DATA FILE
C IS SELECTED
C
C 5 - USED TO READ AND WRITE TO CONSOLE,
C ALWAYS ASSIGNED
C
C 6 - USED TO WRITE TO HARD COPY PRINTER,
C ALWAYS ASSIGNED, THOUGH ONLY USED
C WHEN USER SELECTS THE PRINTER AS
C THE OUTPUT DEVICE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC :

C
C FINAL NOTE: USER INTERACTION IS REQUIRED AT
C VARIOUS INTERVALS. AFTER A PARTICULAR
C PATTERN RECOGNITION ALGORITHM IS CHOSEN
C NO FURTHER INTERACTION IS REQUIRED OTHER
C THAN TO CHOOSE THE VALUE FOR "K" IF A
C NEAREST NEIGHBOR ALGORITHM, OR CHOOSE THE
C TYPE OF "FUZZY" INITIALIZATION IF SO CHOSEN
C UNTIL THE ALGORITHM HAS COMPLETED AND
C INTERPRETIVE OPTIONS BECOME AVAILABLE.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

LOGICAL DONE
CHARACTERN2 REPLY
CHARACTERN15 VFORMT,DFILE
REAL MFUCT(3,242),PROTO(4,3),X(4,242)
REAL HMFUNC(3,242),LOW
INTEGER VECSIZ,VCOUNT,FFEAT,CLASS,VECTOR,CHOICE
INTEGER FETURCHSIZEVCLASS(3),TEST1,START(3)
INTEGER ACOUNT(3),BCOUNT(3),ICOUNT(3),OPTION,POINTR
INTEGER WRNCNT,KFINIT,FUZCH,VECRECCOUHT,END(3)
INTEGERK2 KALPHA(3,242),KBETA(3,242),BETWEN(3,242)
INTEGER92 WRONG(242)
COMMON /AREAl/X /AREA2/PROTO /AREA3/MFUNCT
COMMON /AREA4/WRNCNT,WRONG
COMMON /AREA5/NMFUNC /AREA6/START,EHD
COMMON /AREA8/ACOUNT,BCOUNT,ICOUNT,KALPHA,

1 KBETABETWENC '"

C KKK EXECUTION BEGINS NMN
C
C LOOP(Until user is finished)
1 CONTINUE
C
C FIND OUT WHICH DATA SET TO USE
C

WRITE(5,2)
2 FORMAT(//,, Enter code for data set to use:',

1 //,5X,'l-IRIS data-ISO vectors: 3 classes-'
2 '4 features',//,5X,'2-TWOCLASS data-242'
3 ' vectors: 2 classes-4 features',//5X,
4 '3-IRI523 data-100 vectors: 2 classes-'
5 '4 features',/,7X,'(This file contains'
6 ' classes two and three of IRIS)')

READ(5,6) CHOICE
6 FORMAT(1t)
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C
C
C DO CASECCHOICE)

GO TO (10,15,20) CHOICE
C
C CASE 11
10 CONTINUE

DFILE='IRIS.DAT'
VFORMT=' (20F3.1)'

C GO TO 30
C END CASE 61

C
C CASE #2
15 CONTINUE

DFILE='TWrOCLASS.DAT'
VFORMT='C4F1O.6)'
GO TO 30

C END CASE 12
C
C CASE #3
20 CONTINUE

DFILE='1RIS23.DAT'
VFORMT='(20F3.1)'
GO TO 30

C END CASE 63
C
30 CONTINUE
C END DO CASE
C
C OPEN DATA FILE AND READ IN NUMBER OF CLASSES,
C SIZE OF DATA VECTORS, NUMBER OF VECTORS PER
C RECORD, AND NUMBER OF VECTORS PER CLASS.
C

OPEN(11,FILE=DFILE)
C

READC1I,31) KLASESPVECSIZ,VECREC
31 FORMAT(3I3)

READ(11,31) (VCLASS(l),I=1,KLASES)

VCOUNT=O
C
C DO UNTIL(REMAINING DATA SET DEPENDENT
C VARIABLES INITIALIZED)

DO 32 CLASS=1,KLASES

VCOUNT=VCOUNT+VCLASS( CLASS)
END(CLASS )VCOUNT
STARTCCLASS)=END(CLASS)-VCLASS(CLASS)+1

C
32 CONTINUE
C END DO UNTIL
C
C READ DATA VECTORS FROM DISK FILE,
C THEN CLOSE THE DATA FILE
C
C DO Ut4TIL(DATA VECTORS READ)

DO 33 I=1,VCOUNTPVECREC
READ(11,VFORMT) CCX(J,L),J~1,VECSIZ),

I L=I,I+VECREC-1)
*33 CONTINUE

C END DO UNTIL
C

CLOSEQli)
C
C LOGP(UNTIL ANOTHER DATA SET IS DESIRED)

.534 CONTINUE
C
C
C LET USER KNOW HOW MANY FEATURES ARE AVAILABLE
C

WRITE(5,35) VECSIZ
35 FORMAT(/,'.X,'There are',12,1 features in each

C 1 'vector.')
**1



PAGE 69

KC SET FIRST FEATURE AND LAST FEATURE TO BE CONSIDERED
C WHEN COMPUTING MEMBERSHIP FUNCTION ARRAY.

WRITE(5,4O)
'.0 FORMAT(//,' Input first feature number in vectors'

1 'to useCIl).')
READ(5,M) FFEAT
WRITE (5,4'5)

4.5 FORMAT(//,, Input last feature number in vectors'
I 'to useCIl).')
READ(5,M) IFEAT

C
C INPUT VALUE OF "FUZZIFIER" TO BE USED IN ALGORITHM
C

WRIT EC5,50)
50 FORMAT('l',' Input value of weighting factor'

1 '("FUZZIFIER"):')
READ(5,55) FZFIER

55 FORMAT(F3.1)
C
C TEST IF VALUE OF "FUZZIFIERN IN PROPER RANGE
C (ONLY ALLOW > 1.3)
C

IF(.NOT.(FZFIER.LT.1.3))GO TO 60
FZFIER=1.3

C END IF
60 CONTINUE
C
C SET MAXIMUM MEMBERSHIP UPDATE ERROR ALLOWED
C IN FUZZY K-MEANS ALGORITHM
C

EPSLON0. 001
C
C FIND OUT WHAT TO DO
C

WRIT E( 5,65)
65 FORMAT(/",, Enter code for your choice:',,

1 //,5X,'1 - crisp K-means',
2 "/,5X,'2 - fuzzy K-means',
3 //,SX,'3 - fuzzy K-nearest neighbor',

4 //pX,'4- fuzzy 1-nearest prototype',
5 "/,5X,'5 - fuzzy K-nearest neighbor,'
6' fuzzy initialization',
7 //,5X,'6 - crisp K-nearest neighbor'
8 //,5X,'7 - crisp 1-nearest prototype,)

READ(5,6) CHOICE
C

GO TO (90,95,100,100,100,100,100) CHOICE
C
C CASE #1
90 CONTINUE
C
C INITIALIZE MEMBERSHIP FUNCTIONS,
c THEN RUN CRISP K-MEANS ALGORITHM
C

HIGH=1.0
LOW=0.0
CALL INITMF(VCOUNT,FFEAT,LFEAT,KLASES,HIGH,LOW)
CALL CRMEAN(KLASES,VCOUNT,FFEAT,LFEATEPSLON,

1 ITERAT)
GO TO 4.00

C END CASE #1
C
C CASE 92
95 CONTINUE
C

HIGH=0.98
LOWO .02
CALL INITMF(VCOUNTFFEAT,LFEATKLASESHIGHLOW)
CALL FKMEAN(FZFIER,KLASES,FFEAT,LFEATVCOUNT,

1 EPSLON,ITERAT)
GO TO 4.00

C END CASE #2
C
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C CASES 13,4,5&6
100 CONTINUE

IF((CHOICE..EQ.3).OR. CCHOICE.EQ.5) .OR.
1 (CHOICE.EQ.6)) THEN

WRITE(5,105)
105 FORMAT(/,' Input number of neighbors used to P

I 'assign membership function vaLues(<l0):')
READ(5,6) K
IF(CHOICE.EQ.5) THEN
WRITEC 5,106)

106 FORMAT(/,' Input number of neighbors used to'
I fuzzify memberships of labelled setC<l0):')

READ(5,6) KFINIT
WRITE(5,107)

107 FORMAT(/,' Enter choice of fuzzifying:',//,
1 I - Fuzzifying per nearest neighbor(s)'
2 'technique',//,' 2 - Fuzzifying per D.-
3 'HUNT technique(two class sets only)')

READ(5,6) FUZCH
END IF

END IF

IF((CHOICE.NE.4).AHD.(CHOICE.NE.7)) THEN
C
C INITIALIZE THE MEMBERSHIP FUNCTIONS
C
C DO UNTILCALL MEMBERSHIP FUNCTIONS SET TO ZERO)

DO 115 CLASS=1,KLASES
DO 110 VECTOR1l,VCOUNT -
MFUNCT(CLASSVECTOR)=O.0

110 CONTINUE
115 CONTINUE
C END DO UNTIL
C
C DO UNTILCALL DATA ASSIGNED COMPLETE
c MEMBERSHIP IN THEIR CLASS).

DO 125 CLASS=l,KLASES
DO 120 VECTOR=START(CLASS) ,END(CLASS)
MFUNCT(CLASSoVECTOR)1 .0

120 CONTINUE
125 CONTINUE
C END DO UNTIL
C

END IF
C
C SET FIRST VECTOR IN DATA SET AS THE
C FIRST TEST VECTOR
C
C DO UNTIL(TRAINING PROCEDURE COMPLETED)

DO 300 TEST1=1,VCOUHT
C

IFC(CHOICE.EQ.3).OR.(CHOICE.EQ.5)) THEN
IF(CHOICE.EQ.5) THEN

IF(FUZCH.EQ.2) THEN
CALL FUZFY(FZFIER,FFEAT,LFEATVCOUNT)

ELSE
CALL FZFYNN(FZFIERKLASES,VCOUNT,FFEAT,

I LFEAT,KFINIT,TESTI)
END IF

END IF
CALL FUZNN(FZFIERKLASES,FFEATLFEAT,VCOUNT,

1 K,TESTI)
ELSE IF((CHOICE.EQ.4).OR.(CHOICE.EQ.7)) THEN

C
C DO UNTIL(PROTOTYPES FOUND FOR ALL CLASSES)

DO 230 CLASS1I,KLASES
C
C DO UNTIL(PROTOTYPE VECTOR FOR CURRENT
C CLASS ZEROED)

DO 205 FETUR=FFEAT,LFEAT
PROTO(FETUR,CLASS)=0.0

205 CONTINUE
C END DO UNTIL
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C
C DO UNTIL(PROTOTYPE FOR CURRENT CLASS SUMMED)

DO 220 VECTOR=STARTCCLASS),END(CLASS)
IF(VECTOR.NE.TEST1) THEN

DO 210 FETUR=FFEAT,LFEAT
PROTOC FETUR, CLASS)=PROTO(FETUR,CLASS)

1 +X(FETUR,VECTOR)
210 CONTINUE

END IF
220 CONTINUE
C END DO UNTIL
C

IF((TEST1.GE.START(CLASS)) .AND.
1 CTESTI.LE.END(CLASS))) THEN

COUHT=VCLASS(CLASS)-l
ELSE
COUNT=VCLASS( CLASS)

END IF
C
C DO UNTIL(PROTOTYPE DIVIDED BY COUNT
C OF TRAINING SET)

DO 225 FETUR=FFEAT,LFEAT
PROTOCFETUR,CLASS)=PROTO(FETUR,CLASS)/

225 CONTINUECON
C END DO UNTIL
C
230 CONTINUE
C END DO UNTIL

IFCCHOICE.EQ.4) THEN
CALL FPROTO(FZFIER.KLASES,FFEAT,LFEAT,TESTI)

ELSE
CALL CRSPNPCKLASES,FFEAT,LFEAT,TESTI)

END IF
ELSE IF(CHOICE.EQ.6) THEN

C
CALL CRSPNN(KLASESFFEAT,LFEATKVCOUNT,TESTI)

C
END IF

C
300 CONTINUE
C END DO UNTIL

GO TO 400
C END CASE #3, 4, 5, 6 7
C
400 CONTINUE
C END DO CASE
C
C ~WOUTPUT AND INTERPRET RESULTS N
C

WRITE(5, 500)
500 FORMAT(//,, Where would you like results sent?,

I' Enter choice:,,
2 //,5X,'5 - CONSOLE'#
3 //,5X,'6 - PRINTER')
READC5,506) LU

506 FORMAT(I1)
C

WRITECLUP507) DFILEKFINIT
507 FORMATC' ',' Data set: ',A20,' K=',13p1KFINIT=9pI3)
C

IF((CHOICE.EQ.3).OR.(CHOICE.EQ.5).OR.
1 (CHOICE.EQ.6)) THEN

WRITE(LU,508) K
508 FORMAT(' ',' Number of neighbors used = ',13)

IF((CHOICE.EQ.5).AND.(FUZCH.EQ.1)) THEN
LdRITECLU,509) KFINIT

509 FORMATC' ','Number of neighbors used
1'for initialization ',13)

END IF
END IF

C
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IF(CCHOICE.EQ.1).OR.(CHOICE.EQ.2)) THEN
C

C OUTPUT "EPSLON", AND NUMBER OF ITERATIONS REQUIRED
C

WRITE(LU,602) EPSLON,ITERAT
602 FORMAT(' ','EPSLON (maximum update error allowed'

I) = ',F7.5,' .',13,' iterations required.')
C

END IF
C

IF((CHOICE.GE.2).AND.(CHOICE.LE.5)) THEN
C
C OUTPUT FUZZIFIERc

WRITE(LU,603) FZFIER
603 FORMAT(' ',' The weighting factor("FUZZIFIER") is:'

1 ,F6.3," .')
C

END IF
C

IF((CHOICE.NE.3).AND.(CHOICE.NE.5).AND.
1 (CHOICE.NE.6)) THEN

C
C OUTPUT THE FINAL CLUSTER CENTERS
C

DO 615 INDEX=I,KLASES
WRITE(LU,612) IHDEX,(PROTO(I,INDEX),

1 I:FFEAT,LFEAT)
612 FORMAT(/,1X,'Weighted mean for class 9',

1 12,' :',12F6.3) L..
615 CONTINUE
C

END IF
C
C OUTPUT A CONFUSION MATRIX AND FIND THE INDICES
C OF MISCLASSIFIED VECTORS
C CALL CMTRIX(KLASES ,VCOUNT,LU,CHOICE) L:

IF((CHOICE.GE.2).AND.(CHOICE.LE.5)) THEN
C
C OUTPUT THE MEMBERSHIP FUNCTION ARRAY COMPUTED
C

WRITE(5,669)
669 FORMAT(/,' Enter option:',//,

1 5X,'1 - Output entire membership function
2 'array',//,5X,'2 - Output only the misclassified'
3 'vector"s membership functions')

READ(5,506) OPTION
C

CALL MEMBPR(KLASES,VCOUHT,LU,CHOICEOPTION)
C

END IF
C
C LOOP(UNTIL USER FINISHED)
670 CONTINUE
C

WRITE(5,969)
969 FORMAT(/,, Do you want to find the ALPHA and'

1'BETA cutsets?(Y/H)')
READ(5,996) REPLY
IF(REPLY.EQ.'Y') THEN

C
WRITE(5,971)

971 FORMAT(" ','Input "ALPHA", upper membership'
I cut-off:')

READ(5,972) ALPHA
972 FORMAT(F4.3)

WRITE(5,973)
973 FORMAT(' ','Input "BETA", lower non-membership'

' cut-off:')
READ(5,972) BETA

C
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CALL CUTSETCALPHA,BETA.KLASESVCOU4T,CHOICE,LU)
C

END IF
C

WRITE(5, 995)
995 FORMAT(/,' Do you want a plot of result5?(Y/N)I)

READ(5,996) REPLY
996 FORMAT(Al)
C

IF(REPLY.EQ.1Y') THEN
CALL DOPLOT(KLASESVCOUNT,STARTDEND,LFEATCHOICE)

END IF

WRITE(5, 997)
997 FORMAT(/,' Do you want another plot or cutset,

READ(5,996) REPLY
IF(REPLY.EQ.'Y')GO TO 670

C END LOOP
C

L4RITE(5, 998) -

998 FORMAT(//,' Do you want to run another algorithm,
1' using the same data set?(Y/N)')
READ(5,996) REPLY
IF(REPLY.EQ.'Y')GO TO 34.
WRITEC5, 999)

999 FORMAT(//,' Do you want to got a different,
l'data 5et?(Y/H))
READC5,996) REPLY
IF(REPLY.EQ.'Y')GO TO 1I

C END LOOP
C

STOP
END
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$OPTIMIZE
C A SUBROUTINE WHICH IMPLEMENTS THE FUZZY K-MEANS
C ALGORITHM( ALSO REFERRED TO AS THE FUZZY
C ISODATA ALGORITHM).
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: MAR 1984
C
C FILENAME: FUZKMEAN.FTH

, - C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
C FKMEAN(FZFIER,KLASES,FFEAT,LFEAT,VCOUNT,EPSLON,ITERAT)
C
C INPUT VARIABLES(HOT CHANGED):
C
C FZFIER - REAL VALUE FOR THE WEIGHTING FACTOR(M)
C USED BY FUZZY K-MEANS
C
C KLASES - INTEGER COUNT OF NUMBER OF CLUSTER DESIRED
C
C FFEAT - INTEGER WHICH SETS FIRST FEATURE IN
C DATA SET TO CONSIDER
C
C LFEAT - INTEGER WHICH SETS LAST FEATURE IN
C DATA SET TO CONSIDER
C
C VCOUNT - INTEGER COUNT OF SAMPLES IN DATA SET
C
C EPSLON - REAL VALUE WHICH SETS THE MAXIMUM UPDATE
C ERROR ALLOWED IN ANY MEMBERSHIP
C ASSIGNMENT BEFORE COMPLETION
C
C X - REAL ARRAY 4 BY 242 WHICH HOLDS THE DATA SAMPLES,
C PASSES IN LABELLED FORTRAN COMMON "AREAl"
C
C OUTPUT VARIABLES PRODUCED:
C
C PROTO - REAL ARRAY 4 BY 3 WHICH HOLDS THE FUZZY
C CLUSTER CENTERS PRODUCED, PASSED
C IN LABELLED FORTRAN COMMOM "AREA2" 72
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS THE
C MEMBERSHIP FUNCTION ASSIGNMENTS PRODUCED,
C PASSED IN LABELLED FORTRAN COMMON "AREA3"

C
C ITERAT - INTEGER WHICH HOLDS THE NUMBER OF
C ITERATIONS REQUIRED
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCC

C PSEUDO - CODE SOLUTION
C
C ENTER FUZKMEAN -
C SET MAXIMUM NUMBER OF ITERATIONS ALLOWED
C INITIALIZE ITERATIONS TO 0
C DO UNTIL(MEMBERSHIP FUNCTIONS ASSIGNED STABILIZE
C (UPDATE ERROR OF ANY MEMBERSHIP
C ASSIGNMENT < EPSILON OR MAXIMUM

" *C NUMBER OF ITERATIONS COMPLETE)
C COMPUTE FUZZY CLUSTER CENTERS BASED ON
C MEMBERSHIP ARRAY INITIALIZATION
C SET VECTOR INDEX=l
C DO UNTIL(ALL DATA VECTORS ASSIGNED
C MEMBERSHIP FUNCTIONS)
C COMPUTE DISTANCES FROM EACH FUZZY CLUSTER
C CENTER TO CURRENT DATA VECTOR
C ASSIGN DATA VECTOR MEMBERSHIPS IN ALL CLASSES
C AS A FUNCTION OF DISTANCE FROM FUZZY CLUSTER
C CENTER OF THE CLASS, KEEPING TRACK OF MAXIMUM
C UPDATE DIFFERENCE FOR ALL MEMBERSHIP ASSIGNMENTS
C INCREMENT VECTOR INDEX
C END DO UNTIL
C INCREMENT ITERATION COUNT

• ., ... . ...... ... ... . . . ... . . . , ._,... .... . . . . .
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C END DO UNTIL
C RETURN
CCcCCCCCCCCCCCCCCCCCCCccccCCCCCCCcCCCCccCcCccCCCCCCCCCCc

SUBROUTINE FKMEANCFZFIER,KLASES,FFEAT,LFEAT,
1 VCOUNT,EPSLOH,ITERAT)

C
LOGICAL MATCH
REAL MFUNCT(3,242),X(4,242),NEWMF,PRTO'.,3),XDIST(3)
INTEGER FFEAT,LFEAT,CLASS,VECTOR,FETUR,VCOUNT
COMMON /AREA1/X /AREA2/PROTO /AREA3/MFUNCT

C F
C ~OWINITIALIZE
C
C SET MAXIMUM ITERATIONS
C

MAXITR=50
C
C SET ITERATION TO ZERO INITIALLY

ITERAT=0

C COMPUTE POWER WHICH IS A FUNCTION OF THE "FUZZIFIER"
C

POWER=1 .0/C FZFIER-1 .0)
C
C KKK BEGIN ITERATIONS
C
C DO UNTIL(MAXIMUM DIFFERENCE IN MEMBERSHIP
C FUNCTION UPDATES LESS THAN EPSLON
C OR MAXIMUM ITERATIONS PERFORMED)
1 CONTINUE
C
C COMPUTE WEIGHTED MEANS
C
C DO UNTIL(WEIGHTED MEAN FOR EACH CLASS COMPUTED)

DO 7 CLASS=1,KLASESL
C
C DO UNTIL(MEAN VECTOR # "CLASS" ZEROED)

DO 2 FETUR=FFEAT,LFEAT
PROTO(FETUR,CLASS)= .0

2 CONTINUE
C END DO UNTIL

DENOM=0.0

C DO UNTIL(ALL VECTORS OF CLASS "TCLASS" INCLUDED)
DO 4 VECTOR=1,VCOUNT

C
FUZZED=MFUNCT(CLASS, VECTOR)**FZFIER
DENOM=DENOM+ FUZZED

C
C DO UNTIL(VECTOR NUMBER "VECTOR" INCLUDED)

DO 3 FETUR=FFEAT,LFEAT
P RO T 0 F ETUR, CL ASS )=PROTO( FETUR, CL ASS) +

1 XC FETUR,VECTOR)KFUZZED
3 CONTINUE
C END DO UNTIL
C
4 CONTINUE
C END DO UNTIL
C
C DO UNTIICHEAN VECTOR DIVIDED BY "DENOM")

DO 6 FETUR=FFEAT,LFEAT
PROTO(FETUR,CLASS)=PROTO(FETUR,CLASS)/DENOM

6 CONTINUE
C
7 CONTINUE
C END DO UNTIL L-
C

DIFMAX=0 .0
C
C DO UNTIL(MEMBERSHIP FUNCTIONS UPDATED AND
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C MAXIMUM OLD TO NEW MEMBERSHIP
C FUNCTION DIFFERENCE FOUND FOR
C ALL MEMBERSHIP FUNCTIONS)

DO 14 VECTOR=1,VCOUNT

MATCH=.FALSE.
DSUM=0.0
CLASS1l

C
C DO UNTILCVECTOR "VECTOR" COMPARED TO ALL
C MEANS OR MATCH FOUND)
8 CONTINUE
C
C COMPUTE DISTANCE -VECTOR NUMBER "VECTOR"
C TO MEAN NUMBER "CLASS"
C

XDIST(CLASS)=0 .0
C ... ... ..
C DO UNTILCDISTANCE SQUARED COMPUTED)

DO 9 FETUR=FFEAT,LFEAT
TEMP=X( FETUR,VECTOR)-PROTO(FETUR,CLASS)
XDIST(CLASS)XDIST(CLASS)+TEMPMETEMP

9 CONTINUE
C END DO UNTIL

IF(XDIST(CLASS).EQ.0.O) THEN
MATCH=.TRUE.
MCLASS=CLASS

ELSE
XDIST(CLASS)= . 0/XDIST(CLASS)NNPOWER
DSUM=DSUM+XDIST(CLASS)

END IF
C

CLASS=CLASS+1
C

IF((.NOT.MATCH).AND.(CLASS.LE.KLASES))GO TO 8
C END DO UNTIL
C

IF(.NOT.MATCH) THEN
c DO UNTIL(NEW MEMBERSHIP FUNCTIONS ASSIGNED,

c AND MAXIMUM OLD TO NEW MEMBERSHIP
C FUNCTION DIFFERENCE FOUND FOR
C CURRENT VECTOR)

DO 10 CLASS=1,KLASES
NEWMF=XDIST(CLASS )/DSUM
DIFF=ABS(NEWMF-MFUNCT(CLASS,VECTOR))
MFUHC(LECTOR) =NEWMF

C
C FIND MAXIMUM OF ALL DIFFERENCES IN OLD TO
C TO NEW MEMBERSHIP FUNCTIONS

IF(DIFF.GT.DIFMAX) THEN
DI FMAX=DIFF

END IF
C
10 CONTINUE
C END DO UNTIL
C

ELSE
C
C DO UNTIL(NEW MEMBERSHIP FUNCTIONS ASSIGNED,
C AND MAXIMUM OLD TO NEW MEMBERSHIP
C FUNCTION DIFFERENCE FOUND FOR
C CURRENT VECTOR)

DO 11 CLASS=1,KLASES
C

IF(CLASS.EQ.MCLASS) THEN
NEWMF=1.0

EL SE
NEWMF=0. 0

END IF
DIFF=ABS(NEWMF-MFUNCTCCLASS,VECTOR))
MFUNCT(CLASSD VECTOR)=NEWMF

C
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C FIND MAXIMUM OF ALL DIFFERENCES IN OLD
C TO NEW MEMBERSHIP FUNCTIONS
c

IF(DIFF.GT.DIFMAX) THEN
DI FMAX=DI FF

END IFC""

11 CONTINUE
C END DO UNTIL

END IF
C
14 CONTINUE
C END DO UNTIL
C
C INCREMENT ITERATION COUNT
C

ITERAT=ITERAT+l
C

IF((DIFMAX.GT.EPSLON).AND.
1 (ITERAT.LE.MAXITR))GO TO 1

C END DO UNTIL
C

RETURN
END

L.

L
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$OPTIMIZE
C A SUBROUTINE WHICH IMPLEMENTS THE HARD K-MEANS
C ALGORITHM USING MEMBERSHIP FUNCTIONS( =0,1 )
C INSTEAD OF CLUSTER ASSIGNMENT.
C
C WRITTEN BY: MICHAEL R. GRAY L
C
C COMPLETED: MAY 1984
C
C FILENAME: CRSKMEAN.FTN
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
C CKMEAN(KLASES,VCOUNT,FFEATLFEATEPSLONITERAT)
C .
C INPUT VARIABLES(NOT CHANGED):
C
C KLASES - INTEGER COUNT OF CLASSES,
C OR CLUSTERS TO PRODUCE

* C
C VCOUNT - INTEGER COUNT OF SAMPLE VECTOR IN DATA SET
C
C FFEAT - INTEGER WHICH SETS FIRST FEATURE IN DATA
C VECTORS TO CONSIDER
C
C LFEAT - INTEGER WHICH SETS LAST FEATURE IN DATA
C VECTORS TO CONSIDER
C
C EPSLON - REAL VALUE WHICH SETS MAXIMUM ERROR
C ALLOWED IN CLUSTER UPDATE BEFORE
C STOPPING ITERATIONS
C
C X - REAL ARRAY 4 BY 242 WHICH HOLDS THE DATA SAMPLES,
C PASSES IN LABELLED FORTRAN COMMON BLOCK "AREAlD
C
C OUTPUT VARIABLES PRODUCED:
C
C PROTO - REAL ARRAY 4 BY 3 WHICH HOLDS THE CLUSTER
C CENTERS PRODUCED, PASSED IN LABELLED
C FORTRAN COMMON BLOCK "AREA2"
C
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS THE
C MEMBERSHIP FUNCTION ASSIGNMENTS(O OR 1)
C PASSED IN LABELLED FORTRAN
C COMMON BLOCK "AREA3"
C
C ITERAT - INTEGER WHICH HOLDS THE NUMBER
C OF ITERATIONS REQUIRED
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCi-

C
C PSEUDO - CODE SOLUTION
C
C ENTER CRMEAH
C SET MAXIMUM NUMBER OF ITERATIONS ALLOWED
C COMPUTE INITIAL CLUSTER MEANS
C INITIALIZE ITERATIONS TO 0
C DO UNTIL(CLUSTER MEANS STABILIZE(UPDATE ERROR
C < EPSILON OR MAXIMUM NUMBER
C OF ITERATIONS COMPLETE)
C SET VECTOR INDEX=l
C DO UNTILCALL VECTORS IN DATA SET ASSIGNED
C TO CLUSTER OF CLOSEST MEAN)
C SET CLUSTER-MEAN INDEX:"
C DO UNTIL(CLOSEST CLUSTER MEAN TO
C CURRENT VECTOR FOUND)
C COMPUTE DISTANCE - CURRENT VECTOR
C TO CURRENT CLUSTER MEAN
C IF (FIRST CLUSTER MEAN IN LIST) THEN
C SET MINIMUM DISTANCE TO DISTANCE COMPUTED
C SET CLOSEST INDEX TO I
C ELSE IF (DISTANCE LESS THAN PREVIOUS
C MINIMUM) THEN
C SET MINIMUM DISTANCE TO NEW MINIMUM
C SET CLOSEST INDEX TO THAT OF HEW MINIMUMSi;

-p"

.?. i- ' . - °." . . ".". " " " . " " .". .". •" ' 7
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C END IF
C INCREMENT CLUSTER-MEAN INDEX
C END DO UNTIL
C ASSIGN CURRENT VECTOR TO CLUSTER OF CLOSEST MEAN
C INCREMENT VECTOR INDEX
C END DO UNTIL
C COMPUTE NEW CLUSTER MEANS BASED ON NEW
C ASSIGNMENT AND FIND MAXIMUM UPDATE
C ERROR FOR ALL CLUSTER MEANS
C INCREMENT ITERATION COUNT
C END DO UNTIL
C RETURN
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
SUBROUTINE CRMEAN(KLASES,VCOUNT,FFEATLFEAT,

1 EPSLON,ITERAT)
C

REAL MFUNCT(3,242),X(4,242),PROTO(4,3),UPDATE(4)
INTEGER CLOSER,VCOUNTFFEAT,LFEAT,CLASSDVECTOR
INTEGER FETUR,CCOUHT
COMMON /AREA1/X /AREA2/PROTO /AREA3/MFUNCT .

C
C KKK INITIALIZE W

MAXITR=50
C
C COMPUTE CLUSTER MEANS BASES ON INITIAL
C MEMBERSHIP ASSIGNMENTS
C
C DO UNTIL(CLUSTER MEAN FOR EACH CLASS COMPUTED)

DO 5 CLASS=I,KLASES
C
C DO UHTIL(MEAH VECTOR I "CLASS" ZEROED)

DO 1 FETUR=FFEAT,LFEAT
PROTO(FETUR,CLASS)= .0

1 CONTINUE
C END DO UNTIL
C

CCOUNT=O
C
C DO UNTIL(MEAN FOR CURRENT CLASS COMPUTED)

DO 3 VECTOR=1,VCOUNT
C

IF(MFUNCT(CLASS,VECTOR).EQ.1.0) THEN
CCOUNT=CCOUHT+1

C DO UHTIL(VECTOR NUMBER wVECTOR" INCLUDED)
DO 2 FETUR=FFEAT,LFEAT
PROTO(FETUR,CLASS)=PROTO(FETUR,CLASS)+

1 X(FETURVECTOR)
2 CONTINUE
C END DO UNTIL

END IF
C
3 CONTINUE
C END DO UNTIL
C
C DO UNTIL(MEAN VECTOR DIVIDED BY "CCOUNT")

DO 4 FETUR=FFEAT,LFEAT
PROTO(FETUR,CLASS)=PROTO(FETURCLASS)/CCOUNT

4 CONTINUE
C END DO UNTIL
C
5 CONTINUE
C END DO UNTIL
C
C SET ITERATIONS TO ZERO INITIALLY
C

ITERAT=O
C
C BEGIN ITERATIONS N N "
C
C DO UNTIL(CLUSTER MEANS STABILIZE OR MAXIMUM
C ITERATIONS COMPLETED)



PAGE 80

6 CONTINUE
C
C DO UNTILCALL VECTORS ASSIGNED MEMBERSHIP
C VALUE=1.0 IN CLOSEST CLASS( MINIMUM
C DISTANCE TO PROTO) AND VALUE=0.0
C IN OTHER CLASSES)

DO 10 VECTOR=1,VCOUNT
C
C DO UNTIL(MINIMUM DISTANCE- CURRENT VECTOR
C TO ALL MEANS FOUND)

DO 8 CLASS=1,KLASES
C

XDIST=0.0
C
C DO UNTIL(DISTANCE SQUARED COMPUTED FOR
C CURRENT VECTOR AND CLASS PROTO)

DO 7 FETUR=FFEAT,LFEAT
TEMP=XFETUR,VECTOR)-PROTO(FETUR,CLASS)
XDIST=XDIST+TEMPMTEMP

7 CONTINUE
C END DO UNTIL
C

IF(CLASS.EQ.1) THEN
DISTMN=XDIST
CL OS ER1

ELSE IF(XDIST.LT.DISTMN) THEN
DISTMH=XDIST
CL OSER=CL ASS

END IF
C
8 CONTINUE
C END DO UNTIL
C
C DO UNTILCALL MEMBERSHIP FUNCTIONS OF
C CURRENT VECTOR ZEROED)

DO 9 CLASS=1,KLASES
MFUNCTCCLASS,VECTOR)=0.0

9 CONTINUE
C END DO UNTIL
C
C ASSIGN VECTOR TO CLASS NUMBER "CLOSER"
C

MFUNCT(CLOSER,VECTOR)=1.0
C
10 CONTINUE
C END DO UNTIL
C
C DO UNTIL(EW CLASS MEANS COMPUTED AND
C MAXIMUM UPDATE DIFFERENCE FOUND)

DO 16 CLASS=1,KLASES
C

CCOUNTO0
C DO UNTIL(TEMPORARY MEAN VECTOR ZEROED)

DO 11 FETUR=FFEAT,LFEAT
UPDATE(FETUR)0 .0

11 CONTINUE
C END DO UNTIL
C
C DO UNTIL(CLASS MEAN FOR CURRENT CLASS SUMMED)

DO 13 VECTOR1l,VCOUNT
C

IF(MFUHCT(CLASS,VECTOR).EQ.1.0) THEN
CCOUNT=CCOUNT+1

C DO UNTIL(VECTOR "VECTOR" INCLUDED)
DO 12 FETUR=FFEAT,LFEAT

UPDATE( FETUR)=UPDATE( FETUR)+
1 XCFETUR,VECTOR)

12 CONTINUE
C END DO UNTIL

END IF
C
13 CONTINUE
C END DO UNTIL
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C
C DO UNTIL(MEAM VECTOR DIVIDED BY "CCOUNT")

DO 14 FETUR=FFEAT,LFEAT
UPDATE( FETUR)=UPDATE( FETUR)/CCOUNT

14 CONTINUE
C END DO UNTIL
C

DIST=0.O
C
C DO UNTIL(DISTANCE SQUARED UPDATE MEAN TO
C PREVIOUS MEAN FOUND, AND NEWd MEAN
C ASSIGNED AS THE UPDATE VECTOR FOUND)

DO 15 FETUR=FFEAT,LFEAT

TEMP=PROTO( FETURCLASS)-UPDATE(FETUR)
DIST=DIST+TEMPXETEMP
PROTOCFETURCLASS)=UPDATE( FETUR)

C
15 CONTINUE
C END DO UNTIL
C

IFCCLASS.EQ.1) THEN
DIFPAX=DIST

ELSE IF(DIST.GT.DIFMAX) THEN
DI FMAX=DIST

END IF
C
16 CONTINUE
C END DO UNTIL
C
C INCREMENT ITERATION COUNT
C

ITERAT=ITERAT+1
C

IF((DIFMAX.GT.EPSLON) .AND.(ITERAT.LE.MAXITR))
1 GO TO 6

C END DO UNTIL
C

RETURN
END
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$OPTIMIZE
C A SUBROUTINE WHICH IMPLEMENTS A FUZZY VERSION
C OF THE NEAREST NEIGHBOR ALGORITHM. THE RESULT
C IS TO ASSIGN MEMBERSHIP FUNCTION VALUES TO THE
C VECTOR TO BE CLASSIFIED INSTEAD OF ASSIGNING
C THE VECTOR TO ONE OF THE CLASSES REPRESENTED
C BY THE LABELLED DATA USED.
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: MAR 84'

C FILENAME: FUZHEARN.FTN
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
C FUZNN(FZFIER,KLASESFFEAT,LFEATVCOUNTK,TEST1)
c
C INPUT VARIABLES(NOT CHANGED):
C
C FZFIER - REAL VALUE OF THE WEIGHTING FACTOR
C USED IN THE ALGORITHM
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C
C FFEAT - INTEGER WHICH SETS FIRST FEATURE IN
C DATA VECTORS TO CONSIDER
C
C LFEAT - INTEGER WHICH SETS LAST FEATURE IN
C DATA VECTORS TO CONSIDER
C
C VCOUNT - INTEGER COUNT OF NUMBER OF DATA
C VECTOR SAMPLES
C
C K - INTEGER COUNT OF NUMBER OF NEAREST NEIGHBORS
C TO USE FOR MEMBERSHIP FUNCTION ASSIGNMENTS
C
C TESTi - INTEGER INDEX WHICH INDICATES WHICH OF
C THE DATA VECTORS IS THE CURRENT TEST
C SAMPLE TO BE ASSIGNED MEMBERSHIPS
C
C X - REAL ARRAY 4 BY 242 WHICH HOLDS ALL DATA VECTORS,
C PASSED IN LABELLED FORTRAN COMMON "AREAl"
C
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS
C MEMBERSHIPS OF LABELLED SAMPLES USED
C IN ASSIGNMENT OF "TESTI"'S MEMBERSHIPS,
C PASSED IN LABELLED FORTRAN COMMON "AREA3"
C
C OUTPUT VARIABLES:
C
C HMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS THE
C MEMBERSHIP ASSIGNMENTS PRODUCED,
C PASSED IN LABELLED FORTRAN COMMON "AREA5"
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C PSEUDO - CODE SOLUTION
C
C ENTER FUZNEARN
C INITIALIZE LABELLED SAMPLE INDEX
C INITIALIZE MATCH = NO
C INITIALIZE NEAREST NEIGHBOR COUNTER
C DO UNTIL( "K" NEAREST NEIGHBORS FOUND
C OR A MATCH FOUND)
C COMPUTE DISTANCE FROM TEST VECTOR
C TO CURRENT LABELLED SAMPLE
C IF ( DISTANCE = 0 ) THEN
C MATCH : YES
C ELSE IF C NEAREST NEIGHBOR COUNTER <=
C "K") THEN
C INCLUDE CURRENT LABELLED SAMPLE
C IN LIST OF NEAREST NEIGHBORS
C INCREMENT NEAREST NEIGHBOR COUNTER
C ELSE IF (DISTANCE LESS THAN THAT

- - . . . . -. . . . . .. . . . . . . . . . . . .- . *. , . . * * . • . . . . .. _
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C OF ANY PREVIOUS NEAREST NEIGHBOR )THEN
C DELETE FARTHEST OF PREVIOUS NEAREST NEIGHBORS
C INCLUDE NEW NEAREST NEIGHBOR IN LIST
C END IF
C INCREMENT LABELLED SAMPLE INDEX
C END DO UNTIL
C IFCMATCH NO THEN
C ASSIGN MEMBERSHIPS OF MATCH LABELLED
C SAMPLE TO TEST VECTOR
C ELSE

*C ASSIGN MEMBERSHIPS AS A FUNCTION OF INVERSE
C DISTANCES FROM NEAREST NEIGHBORS
C END IFI.C RETURN
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUBROUTINE FUZNN(FZFIERKLASES,FFEAT,LFEAT,
I VCDUNTJ.K,TESTI)

LOGICAL MATCHIREAL MFUNCT(3,242),X(4,242)DNMFUNC(3,242),DNEAR(I0)
INTEGER FFEAT,CLASS,NEAR(10),FETUR
INTEGER TESTICOUNTR,VTRAIN,VCOUNT
COMMON /AREA3/MFUNCT /AREAI/X /AREA5/NMFUNC

C
C COMPUTE POWER DEPENDENT ON "FUZZIFIER"

PObIER=1.0/CFZFIER-1 .0) 1
C

MATCH=. FALSE.
DSTMAX=0 .0
VTRAIN~1
COUNTR1l

C
C DO UNTIL("K" NEAREST NEIGHBORS FOUND
C OR A MATCH OCCURS)
I CONTINUE
C

DIST=0.0
C

IF(VTRAIN.HE.TESTI) THEN

C DO UNTIL(DISTANCE COMPUTED)
DO 3 FETUR=FFEAT,LFEAT

TEMP=X(FETUR,VTRAIN)-X(FETUR,TEST1)
DIST=DIST+TEMPNTEMP

3 CONTINUE
C END DO UNTIL
C

IF(DIST.EQ.O.O) THEN
MATCH=.TRUE.
MATNUM=VTRAIN

ELSE IF(COUNTR.LE.K) THEN
DNEAR(COUNTR)=DIST
NEAR(COUNTR)=VTRAIN
IF(DNEAR(COUNTR) .GT.DSTMAX) THEN

DSTMAX=DNEAR( COUNTR)
MAXNER=COUNTR

END IF
COUNTR=COUNTR+ 1

ELSE IF(DIST.LT.DSTMAX) THEN
DSTMAX=DIST
DNEAR(MAXNER)=DIST
NEAR(MAXNER )VTRAIN

C DO UHTIL(NEW MAXIMUM DISTANCE OF
C K-NEAREST NEIGHBORS FOUND)

DO 4 INDEX=1,K
IF(DNEAR(INDEX) .GT.DSTMAX) THEN
DSTMAX=DNEAR( INDEX)
MAXHER=IHDEX

END IF
4 CONTINUE
C END DO UNTIL
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END IF

END IF
C

C 100 TO TRAIN=VTRAIN+1 ..l

IF(( .NOT.MATCH) .AND.CVTRAIN.LE.VCOUNT))

C END DO UNTIL
C

IF(.NDT.MATCH) THEN
C
C DO UNTIL(MEMBERSHIP FUNCTIONS ASSIGNED
C TO VECTOR NUMBER "VTEST")

DO 6 CLASS=1,KLASES
C

NMFUNC(CLASS,TEST1 )= .0
SUM~o.0

C DO UNTIL(MEMBERSHIP FUNCTION COMPUTED
C FOR CLASS NUMBER "CLASS")

DO 5 INDEX=1,KI WDIST= 1. O/DNEAR( INDEX)IOEPOWER
SUM=SUM+WDIST
NMFUNC( CL ASST ESTI)=NMFUNC( CL ASS, TESTI) +

1 MFUNCT(CLASS,HEAR(INDEX))NWDIST
5 CONTINUE
C END DO UNTIL
C

NMFUNC(CLASS,TEST1 )NMFUNC(CLASS, TESTI )/SUM
C
6 CONTINUE
C END DO UNTIL
C

ELSE
C
C DO UNTIL(MEMBERS4IP FUNCTIONS ASSIGNED)

DO 7 CLASS1I,KLASESa MFUNC(CLASS, TESTI)=MFUHCT(CLASS,MATNU1)
7 CONTINUE
C END DO UNTIL
C

END IF
C

RETURN

END
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$OPTIMIZE

C A SUBROUTINE WHICH IMPLEMENTS A K-NEAREST
C NEIGHBOR ALGORITHM. VECTORS ARE ASSIGNED
C TO A CLASS VIA MEMBERSHIP FUNCTION ASSIGNMENT
C WITH POSSIBLE VALUES=-O,14

C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: MAR 84
C
C FILENAME: CRISPHN.FTN
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
C CALL CRSPNN(KLASES,FFEAT,LFEAT,K,VCOUNT,TEST1)
C
C INPUT VARIABLES(NOT CHANGED):
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C
C FFEAT -INTEGER WHICH SETS FIRST FEATURE IN
C DATA VECTORS TO CONSIDER
C
C LFEAT - INTEGER WHICH SETS LAST FEATURE IN
C DATA VECTORS TO CONSIDER
C
C K - INTEGER COUNT OF NUMBER OF NEAREST
C NEIGHBORS TO USE FOR CLASSIFICATION
c
C VCOUHT - INTEGER COUNT OF NUMBER OF
C DATA VECTORS IN DATA SET
C
C TEST1 - INTEGER INDEX OF SAMPLE WHICH
C IS BEING CLASSIFIED
C
C X - REAL ARRAY 4 BY 212 WHICH HOLDS ALL DATA VECTORS,
C PASSED IN LABELLED FORTRAN COMMON "AREAl"
C
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS MEMBERSHIPS
C LABELLED SAMPLES USED IN CLASSIFICATION OF
C "TESTI", PASSED IN LABELLED FORTRAN
C COMMON "AREA3"

C OUTPUT VARIABLES:

C NMFUHC - REAL ARRAY 3 BY 242 WHICH HOLDS THE
C MEMBERSHIP ASSIGNMEMTS OF SAMPLE
C "TESTI", PASSED IN LABELLED
C FORTRAN COMMON "AREA3"
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C PSEUDO - CODE SOLUTION

C ENTER CRSPNN
C INITIALIZE LABELLED SAMPLE INDEX
C INITIALIZE MATCH = NO
C INITIALIZE NEAREST NEIGHBOR COUNTER TO 0
C DO UNTILC"K" NEAREST NEIGHBORS FOUND
C OR A MATCH FOUND)
C COMPUTE DISTANCE FROM TEST VECTOR
C TO CURRENT LABELLED SAMPLE
C IF(DISTANCE = 0 ) THEN
C MATCH = YES
C ELSE IF ( NEAREST NEIGHBOR COUNTER <= "K") THEN
C INCLUDE CURRENT LABELLED SAMPLE IN
C LIST OF K NEAREST NEIGHBORS

INCREMENT NEAREST NEIGHBOR COUNTER
C ELSE IF(DISTANCE LESS THAN THAT OF ANYC PREVIOUS NEAREST NEIGHBOR) THEN "'
C DELETE FARTHEST OF PREVIOUS NEAREST NEIGHBORS
C INCLUDE NEW NEAREST NEIGHBOR IN LIST
C INCREMENT LABELLED SAMPLE INDEX
C END DO UNTIL
C IF (MATCH = NO ) THEN
C COUNT NUMBER OF NEAREST NEIGHBORS

C4.. *,~* . . --. Mood -
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C FROM EACH CLASS
C IF(A TIE FOR MAXIMUM NUMBER BETWEEN CLASSES) THEN
C COMPUTE SUM OF DISTANCES FROM TEST VECTOR
C TO ALL NEIGHBORS IN EACH TYING CLASS
C IF( TIE IN SUMS COMPUTED) THEN
C ASSIGN TEST VECTOR TO LAST CLASS WHICH TIED
C ELSE
C ASSIGN TEST VECTOR TO CLASS OF MINIMUM SUM
C END IF
C ELSE
C ASSIGN TEST VECTOR TO CLASS OF
C MAXIMUM NUMBER OF NEIGHBORS
C END IF
C ELSE
C ASSIGN TEST VECTOR TO CLASS OF MATCH
C END IF
C RETURN
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CRSPNN(KLASES,FFEAT,LFEAT,K,VCOUNT,TEST1)

LOGICAL MATCH
REAL MFUNCT(3,242),X(4,242),NMFUC(3,2*2)
REAL DNEAR(1O),DSUM(10)
INTEGER FFEAT,CLASS,VECTOR,NEAR(1O),FEATUR
INTEGER VCOUNT,NEARCL(1O),END(3),VTRAIN
INTEGER COUNTR,COUNT(3) ,MAXNUM(1O) ,TESTI,START(3)
COMMON /AREA3/MFUNCT /AREA1/X /AREA5/NMFUNC
COMMON /AREA6/ START,END

C
MATCH=.FALSE.
DSTMAXO0.O
VTRAIN1l
COUNTRIl

C
C DO UNTIL("K" NEAREST NEIGHBORS FOUND
C OR A MATCH OCCURS)
I CONTINUE
C

IF(VTRAIN.NE.TESTI) THEN
C

DISTO0.O
C
C DO UNTIL(DISTANCE COMPUTED)

DO 3 FEATUR=FFEAT,LFEAT
TEMP=X( FEATURVTRAIN)-XCFEATUR,TEST1)
DIST=DIST+TEMP*TEMP

3 CONTINUE
C END DO UNTIL
C

IF(DIST.EQ.O.O) THEN
MATCH=.TRUE.
MATNUM=VTRAIN

ELSE IF(COUNTR.LE.K) THEN
DNEAR(COUNTR )DIST
IEAR(COUNTR)=VTRAIN
IF(DNEAR(COUNTR) .GT.DSTMAX) THEN

DSTMAX=DNEAR( COUNTR)
MAXNER=COUNTR

END IF
COUNTR=COUNTR+l

ELSE IF(DIST.LT.DSTMAX) THEN
DSTMAX=DIST
DNEAR(MAXNER)=DIST
NEAR(MAXNER)=VTRAIN

C DO UNTIL(NEW MAXIMUM DISTANCE OF K
C NEAREST NEIGHBORS FOUND)

DO 4 INDEX=1,K
IF(DNEAR(INDEX).GT.DSTMAX) THEN

DSTMAX=DHEAR( INDEX)
MAXNER=I NDEX
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END IF
4 CONTINUE

C END DO UNTIL
END IF

C
END IF
VTRAIN=VTRAIN+ 1

C
IFC(.NOT.MATCH).AND.(VTRAIN.LE.VCOUNT))

1 GO TO 1
C END DO UNTIL
C

IF(.NOT.MATCH) THEN
C

C DO UNTIICCOUNTS OF NEAREST NEIGHBORS
C CLASS'S AND CURRENT VECTOR'S
C MEMBERSHIP'S ZEROED)

DO 5 CLASS=1,KLASES
COUNT( CL ASS)=
NMFUNC(CLASS,TESTI)0 .0

5 CONTINUE
C END DO UNTIL
C
C DO UNTIL(CLASS NUMBER OF K-NEAREST
C NEIGHBORS, AND COUNT OF
C NEAREST NEIGHBORS IN A CLASS FOUND)

DO 7 INDEX=I,K
C
C DO UNTIL("INDEX" NEIGHBOR'S
C CLASS FOUND)

DO 6 CLASS=1,KLASES
IF((NEAR(INDEX) .GE.START(CLASS)).AND.

1 (HEAR(INDEX).LE.END(CLASS))) THEN
COUNT(CLASS)=COUNT(CLASS)+1
NEARCL(CINDEX)=CLASS

END IF
6 CONTINUE
C END DO UNTIL
C
7 . CONTINUE
C END DO UNTIL
C
C DO UNTIL(COUNTS SEARCHED FOR MAXIMUM(S))

DO 8 CLASS=1,KLASES
IF(CLASS.EQ.1) THEN 1...
MAX=COUNT (CLASS)
MAXCNT1l
MAXNUM(MAXCNT )CL ASS

ELSE IF(COUNT(CLASS).GT.MAX) THEN
MAX=COUNT(CL ASS)
MAXNUM(MAXCNT )CL ASS

ELSE IF(COUNT(CLASS).EQ.MAX) THEN
MAXCNT=MAXCNT+ 1
MAXNUM(MAXCNT )CL ASS

END IF
a CONTINUE
C END DO UNTIL
C

IFCMAXCNT.EQ.1) THEN
NMFUNC(MAXNUM(MAXCNT) ,TEST1)1 .0

ELSE
C DO UNTIL(SUM OF DISTANCES OF NEIGHBORS
C IN EACH CLASS WHICH TIED
C FOR A MAJORITY COMPUTED)

DO 10 INDEX=I,MAXCNT
DSUM( INDEX)=0.0
DO 9 HEIBOR=1,K

IF(NEARCL(NEIBOR).EQ.MAXNUMcrNDEX)) THEN
DSUM( INDEX)=DSUM( INDEX)+DNEAR(NEIBOR)

END IF
9 . CONTINUE

10 CONTINUE
C END DO UNTIL
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C DO UNTILCMAX OF SUMS OF DISTANCES
C COMPUTED ABOVE FOUND)

DO 11 INDEX=1,MAXCHT
IF(IHDEX.EQ.1) THEN

DMIN=DSUM( INDEX)
MIN=INDEX

ELSE IF(DSUM(INDEX).LE.DMIN) THEN
DMIN=DSUM( INDEX)
MIN=INDEX

END IF
11 CONTINUE
C END DO UNTIL
C
C ASSIGN VECTOR TO THE CLASS-WITH MINIMUM
C TOTAL DISTANCES(TIE GOES TO LAST MINIMUM FOUND)
C

NMFUNC(NEARCL(MIN) ,TEST1)=1 .0
END IF

C
ELSE

C DO UNTIL(MEMBERSHIP FUNCTIONS ASSIGNED)
DO 12 CLASS=1,KLASES

NMFUNC(CLASS, TESTI )=MFUNCT(CLASS,MATUI)
12 CONTINUE
C END DO UNTIL
C

END IF

RETURN L
END
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$OPTIMIZE
C A ROUTINE WHICH IMPLEMENTS A FUZZY VERSIONC OF THE NEAREST PROTOTYPE ALGORITHM. THE

C RESULT IS TO ASSIGN MEMBERSHIP FUNCTION
C VALUES TO THE VECTOR TO BE CLASSIFIED
C INSTEAD OF ASSIGNING THE VECTOR TO ONE
C OF THE CLASSES REPRESENTED BY THE PROTOTYPE
C DATA USED.
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: MAR 84
C
C FILENAME: FUZPROTO.FTN
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
C CALL FPROTO(FZFIERKLASESFFEAT,LFEAT,TEST1)
C
C INPUT VARIABLES(NOT CHANGED):

C FZFIER - REAL WEIGHTING FACTOR USED IN
C THE MEMBERSHIP ASSIGNMENTS
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C
C FFEAT - INTEGER WHICH SETS THE FIRST
C FEATURE IN THE DATA SET TO CONSIDER
C
C LFEAT - INTEGER WHICH SETS THE LAST FEATURE
C IN THE DATA SET TO CONSIDER
C
C TESTI - INTEGER INDEX WHICH POINTS TO VECTOR
C IN DATA TO ASSIGN MEMBERSHIPS
C
C X - REAL ARRAY 4 BY 242 WHICH HOLDS SAMPLES,
C PASSED IN LABELLED FORTRAN COMMON "AREAlW
C
C PROTO-REAL ARRAY 4 BY 3 WHICH HOLDS CLASS
C PROTOTYPES, PASSED IN LABELLED
C FORTRAN COMMON "AREA2"
C
C OUTPUT VARIABLES:
C
C NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS THE
C MEMBERSHIP FUNCTIONS ASSIGNED, PASSED
C IN LABELLED FORTRAN COMMON "AREAS"
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C PSEUDO - CODE SOLUTION
C
C ENTER FPROTO
C SET CLASS INDEX=I
C INITIALIZE MATCH = NO
C DO UNTIL(DISTANCE FROM TEST SAMPLE TO ALL
C PROTOTYPES COMPUTED OR A MATCH FOUND)
C COMPUTE DISTANCE FROM CURRENT CLASS
C PROTOTYPE TO TEST SAMPLE
C IF (DISTANCE = 0 ) THEN
C MATCH = YES
C END IF
C INCREMENT CLASS INDEX
C END DO UNTIL
C IF ( MATCH ) THEN

° C ASSIGN TEST SAMPLE MEMBERSHIP OF
C PROTOTYPE WHICH MATCHED
C ELSE
C ASSIGN MEMBERSHIPS AS A FUNCTION
C OF INVERSE DISTANCES COMPUTED
C END IF

.* C RETURN
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
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SUBROUTINE FPROTOCFZFIERKLASES,FFEAT,LFEATTEST1)
C

LOGICAL MATCH
REAL PROTOC4,3),NMFUNC(3,242),PDIST(3),XC4,242)
INTEGER FFEAT,CLASS,VECTORPFETUR,TEST1
COMMON /AREA2/PROTO /AREA1/X /AREA5/NMFUNC

C
C COMPUTE POWER WHICH IS A FUNCTION OF THE "FUZZIFIER"
C

POWER=1.0/C FZFI ER-i .0)
C

DSUM=0.0
CLASS1l

C
C DO UNTILCDISTANCE CURRENT VECTOR TO EACH
C PROTOTYPE, OR A MATCH FOUND)
1 CONTINUE
C

MATCH=.FALSE.
PDISTCCLASS)=0.0

C
C DO UNTIL(DISTANCE COMPUTED)

DO 2 FETUR=FFEATLFEAT
TEMP=PROTO(FETUR,CLASS)-XCFETUR, TESTI)
PDISTCCLASS)=PDISTCCLASS)+TEMP*TEMP

2 CONTINUE
C END DO UNTIL
C

IF(PDIST(CLASS).EQ.O.O) THEN-
MATCH=.TRUE.
fNUM=CLASS

ELSE
PDIST(CLASS)= . 0/PDIST(CLASS)N*POWER
DSUM=DSUM+PDIST (CLASS)

END IF
C

CLASS=CLASS+l
C -

IFC(.NOT.MATCH).AND.(CLASS.LE.KLASES))
1 GO TO 1

C END DO UNTIL
C

IF(MATCH) THEN
C DO UNTIL(MEMBERSHIP FUNCTIONS OF
C CURRENT VECTOR ZEROED)

DO 3 CLASS=1,KLASES
NMFUNC(CLASS,TEST1)0O.0

3 CONTINUE
C END DO UNTIL
C
C ASSIGN THE VECTOR MEMBERSHIP IN THE
C CLASS FOR WHICH A MATCH OCCURRED

NMFUNCCMNUM,TESTI)1 .0
C

ELSE
C DO UNTILCMEMBERSHIP FUNCTIONS
C ASSIGNED FOR TEST VECTOR)

DO 4 CLASS=1,KLASES
NMFUNC(CLASS, TESTI )PDIST(CLASS)/DSUM

4 CONTINUE
lkC END DO UNTIL

END IF
C

RETURN
END
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$OPTIMIZE
C A SUBROUTINE WHICH IMPLEMENTS A CRISP VERSION
C OF THE NEAREST PROTOTYPE ALGORITHM. THE
C RESULT IS TO ASSIGN MEMBERSHIP FUNCTION
C VALUES TO THE VECTOR TO BE CLASSIFIED
C INSTEAD OF ASSIGNING THE VECTOR TO ONE OF
C THE CLASSES REPRESENTED BY THE PROTOTYPES

C WRITTEN BY: MICHAEL R. GRAY

C COMPLETED: APR 84

C
C FILENAME: CRISPNP.FTN
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE):

C CALL CRSNP(KLASES,FFEATLFEATTEST1)
C
C INPUT VARIABLES(NOT CHANGED):
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C
C FFEAT - INTEGER WHICH SETS THE FIRST FEATURE
C IN DATA SET TO CONSIDER jC
C LFEAT - INTEGER WHICH SETS THE LAST FEATURE
C IN DATA SET TO CONSIDER
C
C TESTI - INTEGER WHICH HOLDS THE INDEX
C OF THE CURRENT TEST SAMPLEC
C X - REAL ARRAY 4 BY 242 WHICH HOLDS ALL DATA
C VECTORS, PASSED IN LABELLED FORTRAN COMMON "AREAl"
C
C PROTO -REAL ARRAY 4 BY 3 WHICH HOLDS THE CLASS
C PROTOTYPES USED IN MEMBERSHIP FUNCTION
C ASSIGNMENT, PASSED IN LABELLLED FORTRAN
C COMMON "AREA2"
C
C OUTPUT VARIABLES:
C
C HMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS
C THE RESULTING MEMBERSHIP FUNCTION
C ASSIGNMENTS FOR THE CURRENT TEST VECTOR
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C PSEUDO - CODE SOLUTION
C . .-.

C ENTER CRSPHP
C INITIALIZE MATCH = NO
C INITIALIZE CLASS INDEX1l
C DO UNTIL(DISTANCES FROM TEST SAMPLE TO EACH
C PROTOTYPE COMPUTED OR A MATCH FOUND)
C COMPUTE DISTANCE FROM TEST SAMPLE
C TO CURRENT CLASS PROTOTYPE
C IF(DISTAHCE = 0 ) THEN
C MATCH = YES
C END IF
C INCREMENT CLASS INDEX
C END DO UNTIL
C IF(MATCH = YES) THEN
C ASSIGN TEST VECTOR MEMBERSHIPS
C OF MATCHING PROTOTYPE
C ELSE
C DETERMINE CLASS OF CLOSEST PROTOTYPE
C IF ( A TIE EXISTS) THEN
C ASSIGN TEST SAMPLE TO CLASS OF LAST
C CLOSE PROTOTYPE DETECTED
C ELSE
C ASSIGN TEST SAMPLE TO CLASS OF
C CLOSEST PROTOTYPE
C END IF
C END IF
C RETURN
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CCccccCCccCcCCcccCcccCCccccccccccccccccCCCCCCCC
SUBROUTINE CRSPNPCKLASES,FFEAT,LFEAT,TEST1)

LOGICAL MATCH
REAL PROTOC4,3),NMFUNCC3,242),PDISTC3),XC4,242)
INTEGER FFEATPCLASSPD IORFETUR *T EST 1
COMMON /AREA2/PROTO /AREAI/X /AREA5/NMFUNC

C
DSUM=0.0
CLASS1l
MATCH=.FALSE.

C
C DO UNTIL(DISTANCE CURRENT VECTOR TO EACH
C PROTOTYPE COMPUTED, OR A MATCH FOUND)
1 CONTINUE
C

PDISTCCLASS)=0.0
C
C DO UNTIL(DISTANCE COMPUTED)

DO 2 FETUR=FFEATLFEAT
TEMP=PROTOC FETURCLASS)-X(FETUR, TESTI)K PDIST(CLASS)=PDIST(CLASS)+TEMPHTEMP

2 CONTINUE
C END DO UNTIL
C
C

IFCPDIST(CLASS).EQ.0.0) THEN
MATCH=.TRUE. .
MNUM=CL ASS

END IF
C

CLASS=CLASS+1
C

IF(( .NOT.MATCH).AND.CCLASS.LE.KLASES))
1 GO TO 1

C END DO UNTIL
C

*C DO UNTIL(MEMBERSHIP FUNCTIONS OF
C CURRENT VECTOR ZEROED)

DO 3 CLASS=1,KLASES
NMFUNC(CLASS,TESTI)=0. 0

3 CONTINUE
C END DO UNTIL
C

IFCMATCH) THEN
C
C ASSIGN THE VECTOR MEMBERSHIP IN THE CLASS
C FOR WHICH A MATCH OCCURRED
C

NMFUNC(MNUM,TESTI)= .0

ELSE
C DO UNTILCCLOSEST OF THE PROTOTYPES FOUND)

DO 4 CLASS1I,KLASES
IFCCLASS.EQ.1) THEN
CLOSE=PDIST(CLASS)
NUMB ER=CLIASS

ELSE IF(PDISTCCLASS).LE.CLOSE) THEN
CLOSE=PDISTCCLASS)
NUMB ER=CLIASS

END IF
4 CONTINUE
C END DO UNTIL
C
C ASSIGN VECTOR TO CLASS OF CLOSEST PROTOTYPE
C (IF A TIE CLOSEST=LAST CLOSEST FOUND)
C

NMFUNC(NUMBERTESTI):1 .0
C

END IF
C

RETURN
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$OPTIMIZE
C A SUBROUTINE WHICH ASSIGNS MEMBERSHIP
C FUNCTION VALUES BASED ON THE NEAREST
C NEIGHBOR wFUZZIFYING" RULE,
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: JUNE 84 -
C
C FILENAME: MGFZFYNN.FTN
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
C FZFYHNCFZFIER,KLASES,VCOUNTFFEAT,LFEATKTESTI)
C
C INPUT VARIABLES(NOT CHANGED):
C
C FZFIER - REAL VALUE OF THE WEIGHTING FACTOR
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C
C VCOUNT - INTEGER COUNT OF NUMBER OF SAMPLE VECTORS
C
C FFEAT - INTEGER WHICH SET FIRST FEATURE
C IN SAMPLE VECTORS TO CONSIDER
C
C LFEAT - INTEGER WHICH SET LAST FEATURE IN
C IN SAMPLE VECTOR TO CONSIDER
C
C K - INTEGER COUNT OF NUMBER OF NEIGHBORS TO
C USE FOR MEMBERSHIP FUNCTION INITIALIZATION
C
C TESTI - INTEGER INDEX OF TEST SAMPLE
C
C X - REAL ARRAY 4 BY 242 WHICH HOLDS ALL SAMPLE VECTORS,
C PASSED IN LABELLED FORTRAN COMMON "AREAl"
C
C START - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS THE
C STARTING INDICES OF EACH CLASS OF SAMPLES,
C PASSED IN LABELLED FORTRAN COMMON "AREA6"
C
C END - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
C THE ENDING INDICES OF EACH CLASS OF SAMPLES,
C PASSED IN LABELLED FORTRAN COMMON "AREA6"
C
C OUTPUT VARIABLES:
C
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS
C THE MEMBERSHIP FUNCTION ASSIGNMENTS,
C PASSED IN LABELLED FORTRAN COMMON "AREAS"
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC :
C
C PSEUDO - CODE SOLUTION
C
C ENTER FZFYNH
C INITIALIZE VECTOR INDEX = 1
C DO UNTIL ( EACH LABELLED SAMPLE USED TO CLASSIFY
C "TESTI" ASSIGNED MEMBERSHIPS)
C IF(VECTOR NOT EQUAL TO "TESTI") THEN
C FIND K NEAREST NEIGHBORS IN LABELLED
C SAMPLE SET TO CURRENT VECTOR
C DETERMINE COUNT OF NEAREST NEIGHBORS
C TO USE FOR INITIALIZATION
C INITIALIZE CLASS INDEX =1
C DO UNTIL (CURRENT VECTOR ASSIGNED
C MEMBERSHIP IN ALL CLASSES)
C IF(CLASS INDEX = KNOWN CLASS
C OF CURRENT VECTOR) THEN
C ASSIGN MEMBERSHIP = 0.51 + (COUNT OF
C "K" NEAREST NEIGHBORS FOUND/"K") X 0.49
C ELSE

*C ASSIGN MEMBERSHIP =(COUNT OF "K"
C NEAREST NEIGHBORS FOUND/"K")NO.49
C END IF

71
.° . . , - - .. . - . - ° .- .- . , • °- • , .- • ,. ,. . - o ,. . • . ..,.,'...,._,..,,,..., , '.... . . .- ,.!.*. '. ,:-'..... .. , .... ,--.... • .--. '.
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C INCREMENT CLASS INDEX
C END DO UNTIL
C END IF
C INCREMENT VECTOR INDEX
C END DO UNTIL
C RETURN

C
SUBROUTINE FZFYNNCFZFIER,KLASES,VCOUNT, FFEAT,
1 LFEATPKTESTI)

REAL MFUNCTC3,242),XC4,242),DNEARC1O)
* INTEGER FFEATPCOUNTRVECTORPHEARC1O)

INTEGER STARTC3),ENDC3),VCOUNTTEST1.VTRAIN
INTEGER FETURPCLASS,COUNTC3) IVCLASS
COMMON /AREA3/MFUNCT /AREA1/X /AREA6/START,END

C
C
C DO UNTILCALL DATA ASSIGNED MEMBERSHIPS)

DO 40 VTRAIN=1VCOUNT

IF(VTRAIN.NE.TEST1) THEN
C

COUNTR1l
DSTMAX=0.0
MAXNER1l

C DO UNTIL (K NEAREST NEIGHBORS FOUND)
DO 5 VECTOR=I,VCOUNT

C
IFC CVECTOR.NE.VTRAIN) .AND.

1(VECTOR.NE.TESTI)) THEN
C

DIST=0.S
C DO UNTIL(DISTANCE COMPUTED)

DO 3 FETUR=FFEATLFEAT
TEMP=XCFETUR,YTRAIK)-XCFETUR,VECTOR)
DIST=DIST.TEMPHTEMP

3 CONTINUE
C END DO UNTIL
C

IF(COUNTR.LE.K) THEN
DNEAR( COUNTR)=DIST
NEAR CCOUNTR )=VECTOR
IFCDNEAR(COUNTR) .GT.DSTMAX) THEN

DSTtIAX=DHEAR(CCOUNTR)
MAXNER=COUNTR

END IF
COUNTR=COUNTR+ 1

ELSE IFCDIST.LT.DNEARCMAXNER)) THEN
DNEARCPIAXNER )DIST
N EAR CMAXN ER )=V ECT OR

C DO UNTIL(NEI MAXIMUM DISTANCE OF
C K NEAREST NEIGHBORS FOUND)

DO 4 INDEX=1,K
IFCDNEARCINDEX).GT.DNEARCMAXNER)) THEN
MAXNER=INDEX

END IF
4 CONTINUE
C END DO UNTIL

END IF
C

END IF
C
5 CONTINUE
C END DO UNTIL
C
C DO UNTILCCLASS OF NEAREST NEIGHBORS
C AND "VTRAIN" DETERMINED)

DO 10 CLASS=I,KLASES
COUNT(CCLASS)=
DO 7 INDEX=11K

. .7
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IF(CNEARC INDEX) .GE.START(CLASS)) .AND.
1 CNEAR(INDEX).LE.END(CLASS))) THEN

COUHTCCLASS)=COUNTCCLASS )41
END IF

7 CONTINUE
IFCCVTRAIN.GE.STARTCCLASS)) .AND. I

1 (VTRAIN.LE.ENDCCLASS))) THEN
VCLASS=CLASS

END IF
10 CONTINUE
C END DO UNTIL
C
C DO UNTILCIIEIIERSHIP FOR VECTOR
C HNBER "VTRAIN" ASSIGNED)

DO 15 CLASS=1,KLASES
IF(CLASS.EQ.VCLASS) THEN
NFUNCTCCLASS,VTRAIH)=0.514

1 (COUNT(CLASS)NO.49)/K
ELSE
MFUNCTCCLASS,VTRAIN)C(COUNTCCLASS)NS .49)/K

END IF
15 CONTINUE
C END DO UNTIL
C

END IF
C
40 CONTINUE
C END DO UNTIL
C

RETURN
END
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$OPTIMIZEc .
C A SUBROUTINE WHICH INITIALIZES THE MEMBERSHIP
C ARRAY USED IN A FUZZY CLASSIFICATION ALGORITHM.
CC WRITTEN BY: MICHAEL R. CRAYi|-

C COMPLETED: APR 84
c
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
C CALL INITMF(VCOUNTFFEAT,LFEAT,KLASES,HIGHLOW)c ,
C INPUT VARIABLES(NOT CHANGED):

Cc
C VCOUNT - THE NUMBER OF VECTORS IN VECTOR, AN INTEGER.

C
C FFEAT - THE FIRST FEATURE TO BE CONSIDERED
C IN THE DATA VECTORS, AN INTEGER.

CC LFEAT - THE LAST FEATURE TO BE COHSIDEREDMB.H.C IN THE DATA VECTORS, AN INTEGER. ,]

CC HIGH - THE REAL VALUE TO USE FOR "HIGH" MEMBERSHIP. /'

C LOW - THE REAL VALUE TO USE FOR "LOW w MEMBERSHIP.

C X - A REAL ARRAY OF DIMENSION (4,242), DATA SET
C TO BE CLASSIFIED OR CLUSTERED, PASSED IN
C LABELLED FORTRAN COMMON "AREAl"
C
C OUTPUT VARIABLES:
C
C MFUNCT - A REAL ARRAY OF DIMENSION (3,242),CONTAINS
C "KLASESw CLASSES, "VCOUNTO VECTORS,
C PASSED IN LABELLED FORTRAN COMMON wAREA3f.C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C PSEUDO - CODE SOLUTION

C ENTER INITMF
C COMPUTE MEAN OF ENTIRE DATA SET
C FIND SAMPLE FARTHEST FROM SAMPLE
C MEAN AND ASSIGN IT AS "FARI"
C IF( KLASES >= 3 ) THEN
C FIND SAMPLE FARTHEST FROM "FARI"
C AND ASSIGN IT AS "FAR2"
C END IF
C ASSIGN ALL SAMPLES WITH "HIGHw MEMBERSHIP IN
C CLASS 2 AND "LOW" MEMBERSHIP IN ALL OTHER CLASSES
C IF( CLASSES < = 2 ) THEN
C REASSIGN SAMPLE "FARi" WITH "HIGHw MEMBERSHIP IN
C CLASS 1 AND wLOW" MEMBERSHIP IN ALL OTHER CLASSES
C ELSE IF (CLASSES >= 3) THEN
C REASSIGN SAMPLE "FARl" WITH "HIGHw MEMBERSHIP IN
C CLASS 3 AND "LOW" MEMBERSHIP IN ALL OTHER CLASSES
C REASSIGN SAMPLE "FARl" WITH "HIGH" MEMBERSHIP IN
C CLASS 1 AND "LOW" MEMBERSHIP IN ALL OTHER CLASSES
C END IF
C RETURN
C -
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC .-

C
SUBROUTINE INITMF(VCOUNT,FFEAT,LFEATKLASES,HIGH,LOW)

C
INTEGER FFEATFETUR,VECTORVCOUNT,FAR1,FAR2
REAL MFUNCT(3,242),X(4,242),SMEANC4),LOW
COMMON /AREA3/MFUNCT /AREAI/X

C
C DO UNTIL(SAMPLE MEAN VECTOR SET TO ZERO)

DO I FETUR:FFEATLFEAT
SMEAN(FETUR)=0.S

1 CONTINUE
C END DO UNTIL

.k .. *
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C
C DO UNTIL(ALL VECTOR IN DATA SET SUMMED)

DO 3 VECTOR=1.VCOUNT
C DO UNTILCVECTOR NUMBER "VECTOR" INCLUDED IN SUM)

DO 2 FETUR=FFEATLFEAT
SMEANCFETUR)=SMEANCFETUR)+XC FETUR,VECTOR)

2 CONTINUE
*C END DO UNTIL

3 CONTINUE
C END DO UNTIL
C
C DO UNTILCALL COMPONENTS OF SAMPLE MEAN VECTOR
C DIVIDED BY COUNT OF VECTORS IN DATA SET)

DO 4 FETUR=FFEAT,LFEAT
SMEAN( FETUR)=SMEANC FETUR)/VCOUNT

4 CONTINUE
C END DO UNTIL
C

DMAX=0.O

C DO UNTILCVECTOR FARTHEST FROM SAMPLE MEAN FOUND)
DO 6 VECTOR1l,VCOUNT

C
DIST1O0.O

C DO UNTIL(DISTANCE SQUARED FROM CURRENT
C VECTOR TO SAMPLE MEAN FOUND)

DO 5 FETUR=FFEAT,LFEAT
TEMP=XC FETUR,VECTOR)-SMEANCFETUR)
DISTI=DISTI+TEMPHTEMP

5 CONTINUE
C END DO UNTIL
C

IF(DISTI.GT.DMAX) THEN
DMAX=DIST 1
FARI=VECTOR

END IF
C

6 CONTINUE
C END DO UNTIL
C

IF(KLASES.GE.3) THEN
DMAX=0.0

C DO UNTILCVECTOR FARTHEST FROM THE
C ONE FOUND ABOVE LOCATED)

DO 8 VECTOR1l,VCOUNT
C

DIST1O0.S

C DO UNTILCDISTANCE SQUARED FROM CURRENT
C VECTOR TO VECOTR "FARl" FOUND)

DO 7 FETUR=FFEAT,LFEAT
TEMP:XC FETUR,VECTOR)-XC FETUR, FARi)
DISTI=DISTI+.TEMPNTEMP

7 CONTINUE
C END DO UNTIL
C

IFCDIST1.GT.DMAX) THEN
DMAX=DISTI
FAR2=VECTOR

END IF
C
a CONTINUE
C END DO UNTIL

END IF
C
C ASSIGN MEMBERSHIP FUNCTIONS AS FOLLOWS:
C
C DO UNTILCALL VECTORS GIVEN "HIGH"
C MEMBERSHIP IN CLASS 2)

DO 9 VECT0R=1,VCOUNT
MFUNCT( 1,VECTOR)=LOW
MFUNCT(2,VECTOR)=HIGH
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MFUNCTC 3, VECTOR)=LOM
9 CONTINUE
C END DO UNTIL
C

IFCKLASES.LE.2) THEN
C GIVE VECTOR NUMBER "FARIN A "HIGH"
C MEMBERSHIP IN CLASS 1

MFUNCTCI,FAR1)=HIGH
MFUNCTC2. FARI )LOW
MFUNCTC3, FARI)=LO1

ELSE IFCKLASES.GE.3) THEN
C
C GIVE VECTOR NUMBER "FARI" HIGH
C MEMBERSHIP IN CLASS 3
C

MFUNCTCl1 FAR1)=LOW
MFUNCTC2, FARI )LOW
MFUNCT(5,FAR1)=HIGH

C GIVE VECTOR NUMBER "FAR2" HIGH
C MEMBERSHIP IN CLASS 1
C

MFUNCTC1, FAR2)=HIGH
MFUNCTC2,FARZ)=LOW
MFUNCTC3, FAR2)L1

C
END IF

C
RETURN
END
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$OPTIMIZE
C A SUBROUTINE WHICH OUTPUTS THE MEMBERSHIP FUNCTION
C ARRAY SELECTED VIA VALUE OF "CHOICE" AND "OPTION".
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: MAY 84

= C
C FILENAME: MGMEMBPR.FTN
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
C CALL MEMBPRCKLASES,VCOUNT,LU,CHOICE,OPTION)
C
C INPUT VARIABLES(NOT CHANGED):.
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C
C VCOUHT - INTEGER COUNT OF SAMPLES IN DATA SET
C
C LU - INTEGER WHICH HOLDS THE LOGICAL UNIT
C NUMBER USED FOR OUTPUT
C
C CHOICE - INTEGER WHICH SELECTS WHICH MEMBERSHIP
C FUNCTION ARRAY TO OUTPUT
C
C OPTION - INTEGER WHICH SELECTS WHETHER TO OUTPUT
C ENTIRE MEMBERSHIP ARRAY "NMFUNC" OR ONLY THE
C PORTION WHICHINCLUDES MISCLASSIFIED SAMPLES
C
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS MEMBERSHIPS
C PRODUCED EITHER BY A CLUSTERING ALGORITHM
C OR DIRECT ASSIGNMENT, PASSED IN LABELLED
C FORTRAN COMMON "AREA3"
C
C NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS MEMBERSHIP
C ASSIGNMENTS PRODUCED BY ONE OF THE
C CLASSIFER ALGORITHMS, PASSED IN
C LABELLED FORTRAN COMMON "AREAS"
C
C WRONG - INTEGERN2 ARRAY Or DIMENSION 242 WHICH
C HOLDS THE INDICES OF MISCLASSIFIED VECTORS,
C PASSES IN LABELLED FORTRAN COMMON "AREA4"
C
C WRNCNT - INTEGER COUNT OF MISCLASSIFIED SAMPLES
C WHOSE INDICES ARE STORED IN "WRONG",
C PASSED IN LABELLED FORTRAN COMMON "AREA4"
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C.
C PSEUDO - CODE
C
C ENTER MEMBPR
C IF(CHOICE <= 2 ) THEN
C OUTPUT HEADING FOR MEMBERSHIP ARRAY
C PRODUCED BY CLUSTERING ALGORITHM
C ELSE
C OUTPUT HEADING FOR MEMBERSHIP ARRAY
C PRODUCED BY CLASSIFICATION ALGORITHM
C END IF

* C IF(OPTION = 1 ) THEN
C IF(CHOICE <= 2) THEN
C OUTPUT MEMBERSHIP ARRAY PRODUCED
C BY CLUSTERING ALGORITHM
C ELSE
C OUTPUT MEMBERSHIP ARRAY PRODUCED
C BY CLASSIFICATION ALGORITHM
C END IF
C ELSE
C IF(CHOICE <= 2) THEN
C OUTPUT MEMBERSHIPS OF SAMPLES MISCLASSIFIED
C BY CLUSTERING ALGORITHM
C ELSE
C OUTPUT MEMBERSHIPS OF SAMPLES MISCLASSIFIED
C BY CLASSIFICATION ALGORITHM

S* - , - -.- , , , , . . . . -. -, . .,.
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C END IF
C END IF
C RETURN
CCCCCCCCCCccccccccccccCCCCCC~~CCccCCccCCCCCCCCCCccCcCCCC -

C

REAL MFUNCTC3,242)PNMFUNCC3,2i2)
INTEGER VCOUHT,CLASS,CHOICE,OPTION,WRNCNTCOUNT
INTEGERN(2 WRONGC242)
COMMON /AREA3/MFUNCT /AREA4AdRNCNT ,WRONG
COMMON /AREA5/NMFUNC
IFCCHOICE.LE.2) THEN

WRITEC LU, 1)
I FORMATC/,43X,'PROTOTYPE DATA MEMBERSHIP'

1 ' FUNCTION ARRAY')
ELSE

WR IT ECLU, 2)
2 FORMAT(/,43X,'NEWLY ASSIGNED MEMBERSHIP'

1 ' FUNCTION ARRAY')
END IF
IFCOPTION.EQ.1) THEN
WRITE CLU, 3)

3 FORMAT(' ','CLASS')
DO 11 INDEX1I,VCOUNT,20

IFCCINDEX+20).GT.VCOUNT) THEN
COUNT=VCOUNT

ELSE
COUNT=INDEX+1 9

END IF
WRITECLU,4) CI,I=INDEX,COUNT)

4t FORMAT(' ',6Xp'X',1Xo20(2X,I3,1X))
DO 8 CLASS=1,KLASES *

IFCCHOICE.LE.2) THEN
WRITECLU,7) CLASS,CMFUNCTCCLASS,I),-

1 r=INDEX,COUNri
7 FORMATC' ',I3,4X,20F6.3)

ELSE
klRITECLU,7) CLASS,(NMFUNCCCLASSI),

1 I=INDEX,COUNT)
END IF

a CONTINUE
11 CONTINUE
C

ELSE
C

WRITE(LU, 12)
12 FORMATC/,SOX,'MISCLASSIFIED VECTORS ONLY')

WRITE(CLU, 3)
C

DO 18 INDEX=1,WRNCNT,20
IFCCINDEX+20) .GT.WRNCNT) THEN
COUNT=WRNCNT

ELSE
COUNT=INDEX+19

END IF
WRITECLU,t) CWRONGCI)pI-'INDEX,COUNT)
DO 14 CLASS1,PKLASES

IF(CHOICE.LE.2) THEN
WRITECLU,7) CLASSv(MFUNCTCCLASS,

1 WRONG(I)),I=INDEX,COUNT)
ELSE
WRITECLU,7) CLASS,(NMFUNCCCLASS,

I WRONGCI))PI=INDEX,COUNT)
END IF

14 CONTINUE
18 CONTINUE

END IF
C

RETURN
END
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$OPTIMIZE
C A SUBROUTINE WHICH COMPUTES THE UPPER AND
C LOWER CUT-SETS OF A FUZZY MEMBERSHIP
C FUNCTION ARRAY AND OUTPUTS THE COUNTS OF
C SAMPLE VECTORS IN THE RESULTING CUT-SETS.
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED: APR 84
C
C FILENAME: MGCUTSET.FTN
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
C CALL CUTSET(ALPHA,BETA,KLASESVCOUNT,CHOICE,LU)
C
C INPUT VARIABLES(NOT CHANGED):
C
C ALPHA - REAL VALUE OF THE UPPER MEMBERSHIP
C LIMIT FOR THE CUT-SET TO BE ASIGNED
C
C BETA - REAL VALUE OF THE LOWER MEMBERSHIP
C LIMIT FOR THE CUT-SET TO BE ASIGNED
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C
C VCOUNT - INTEGER COUNT OF HUMBER OF SAMPLE VECTORS
c
C CHOICE - INTEGER WHICH CHOOSES BETWEEN CUT-SETS
C OF MEMBERSHIPS IN ARRAY ASSIGNED BY
C CLUSTERING OR CLASSIFICATION ALGORITHM
C
C LU - INTEGER VALUE WHICH SETS THE LOGICAL
C UNIT FOR OUTPUT
C
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS THE
C MEMBERSHIPS COMPUTED BY A CLUSTERING
C ALGORITHM, PASSED IN LABELLED
C FORTRAN COMMON "AREA3"
C
C NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS THE
C MEMBERSHIPS COMPUTED BY A CLASSIFICATION
C A CLASSIFICATION ALGORITHM, PASSED IN
C LABELLED FORTRAN COMMON "AREA5"
C
C WRONG - INTEGER*2 ARRAY OF DIMENSION 242 WHICH HOLDS
C THE INDICES OF MISCLASSIFIED SAMPLES, PASSED
C IN LABELLED FORTRAN COMMON "AREA."
C
C WRNCNT -INTEGER WHICH SPECIFIES NUMBER OF
C MISCLASSIFIED SAMPLES INDICES IN "WRONG",
C PASSED IN LABELLED FORTRAN COMMON "AREA4"
C
C OUTPUT VARIABLES:
C
C KALPHA - INTEGER*2 ARRAY 3 BY 242 WHICH HOLDS
C INIDCES OF SAMPLES WITH MEMBERSHIP
C > "ALPHA" FOR EACH CLASS
C
C ACOUNT - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
C COUNT OF SAMPLES IN "KALPHA" FOR EACH CLASS
C
C KBETA - INTEGER*2 ARRAY 3 BY 242 WHICH HOLDS
C INDICES OF SAMPLES WITH MEMBERSHIP
C < "BETA" FOR EACH CLASS
C
C SCOUNT - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
C COUNT OF SAMPLES IN "KBETA" FOR EACH CLASS
C
C BETWEN - INTEGER*2 ARRAY 3 BY 242 WHICH HOLDS INDICES
C OF SAMPLES WITH MEMBERSHIP >= "BETA" AND
C <= "ALPHA" FOR EACH CLASS
C
C ICOUNT - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
C COUNT OF SAMPLES IN "BETWEN" FOR EACH CLASS
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* C
C PSEUDO - CODE SOLUTION
C
C ENTER CUTSET
C PROMPT USER TO CHOOSE IF ALL SAMPLES TO BE
C TESTED C"ICHOICE"=1) OR ONLY MISCLASSIFIED
C SAMPLES TO BE TESTEDC"ICHOICE"=2)
C IF(ICHOICE=2) THEN
C SET SAMPLE COUNT TO "WRNCNT"
C ELSE
C SET SAMPLE COUNT TO "VCOUNT"
C END IF
c DO UNTIL( ALL CLASSES CONSIDERED)
C IF( CHOICE <=2 ) THEN
C GET INDICES AND COUNT OF SAMPLES WITH
C MEMBERSHIPS > "ALPHA" IN CURRENT
C CLASS USING "MFUNCT" MEMBERSHIPS

*C GET INDICES AND COUNT OF SAMPLES WITH
C MEMBERSHIPS < "BETA" IN CURRENT W4
C CLASS USING "MFUNCT" MEMBERSHIPS
C GET INDICES AND COUNT OF SAMPLES WI1TH
C MEMBERSHIP <= "ALPHA" AND >= "BETA IN
C CURRENT CLASS USING "MFUNCT" MEMBERSHIPS
C ELSE
C GET INDICES AND COUNT OF SAMPLES WITH
C MEMBERSHIPS > "ALPHA" IN CURRENT
C CLASS USING "NMFUNC" MEMBERSHIPS
C GET INDICES AND COUNT OF SAMPLES WITH
C MEMBERSHIPS < "BETA" IN CURRENT
C CLASS USING "NMFUNC" MEMBERSHIPS
C GET INDICES AND COUNT OF SAMPLES WITH
C MEMBERSHIPS <= "ALPHA" AND >= "BETA" IN

*C CURRENT CLASS USING "NMFUNC" MEMBERSHIPS
C END IF
C END DO UNTIL
C OUTPUT TO "LU"f THE COUNTS OF SAMPLES IN THE
C UPPER, LOWER, AND INNER CUT-SETS
C RETURN
C

SUBROUTINE CUTSET(ALPHABETA,KLASES,VCOUNT,CHOICE,LU)

REAL MFUNCTC3,242),NMFUNC3,2.2)
INTEGER VCOUNTCLASS,VECTORCHOICE

4 INTEGER ACOUNT(3),BCOUNT(3),ICOUNT3),dRNCNT
INTEGER*2 KALPHA(3,2't2),KBETA(3,2t2).BETIJENC3,242)

* INTEGERN2 W.RONG(242)
COMMON /AREA3/MFUNCT /AREA4/WRNCNT,WRONG /AREA5/HMFUNC
COMMON /AREA8/ACOUNTBCOUNT,ICOUNT,KALPHA,KBETA,BETWEN

C
WRITE(5,1)

1 FORMATC/,2X,'ENTER YOUR CHOICE:'.//,5X,
1'1 - CONSIDER ALL VECTORS't/,5X,
2'2 - CONSIDER ONLY MISCLASSIFIED VECTORS')

READC5,2) ICHOICE
2 FORMATCI1)

IF(ICHOICE.EQ.2) THEN
NUMBER=WRNCNT

ELSE
NUMB ER= VCOUNT

END IF
C

DO 12 CLASS=1,KLASES
ACOUNT(CLASS)=0
BCOUNT (CLASS) =0
ICOUNTCCLASS)=0

C
IF(CHOICE.LE.2) THEN

C DO UNTILCCHOSEN VECTORS OF DATA SET
C FOR CURRENT CLASS CHECKED)
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DO 4 INDEX=1,NUMBER
IF(ICHOICE.EQ.2) THEN
VECTOR=WRONG( INDEX)

ELSE
VECTOR=INDEX

END IF 1
IF(MFUNCT(CLASS,VECTOR).GT.ALPHA) THEN

ACOUNT(CCL ASS ) ACOUNT CCL ASS )41
KALPHA(CLASSACOUNTCCLASS) )=VECTOR

ELSE IFCMFUNCT(CLASS,VECTOR) .LT.BETA) THEN
BCOUNTCCLASS)=BCOUNTC CLASS )+1
KBETA(CLASS,BCOUHT(CLASS) )VECTOR

EL SE
ICOUNTCCLASS)=ICOUNT(CLASS)+l
BETIIENCCLASS, ICOUNTCCLASS) )VECTOR

END IF
4 CONTINUE
C END DO UNTIL

ELSE
*C DO UNTILCALL VECTORS OF TEST SET

C FOR CURRENT CLASS CHECKED)
DO 6 INDEX=1,NUMBER
IFCICHOICE.EQ.2) THEN
VECTOR=WRONGC INDEX)

ELSE
VECTOR=INDEX

END IF
IF(NMFUNCCCLASS,VECTOR).GT.ALPHA) THEN

ACOUNTCCLASS)=ACOUNTC CLASS)+1
KALPHA(CLASS,ACOUNTCCLASS) )VECTOR

ELSE IFCNMFUNCCCLASSVECTOR).LT.DETA) THEN
BCOUNT (CLASS)=BCOUNTC CLASS) +1
KBETACCLASS,BCOUNTCCLASS) )VECTOR

ELSE
ICOUNTCCLASS)=ICOUNTC CLASS)41
BETWENC CLASS, ICOUNTCCLASS))=VECTOR

END IF-
6 CONTINUE
C END DO UNTIL

END IF
C
12 CONTINUE
C END DO UNTIL
C

IF(ICHiOICE.EQ.2) THEN
bIRITE(LU, 13)

13 FORMAT(/,' THE FOLLOWING CONSIDERS
1 'MISCLASSIFIED VECTORS.')

ELSE
WRITE(LU, 14)

14 FORMAT(/,.' THE FOLLOWING CONSIDERS
1 'ALL VECTORS IN DATA SET.')

END IF
C-

DO 16 ICLASS1,PKLASES
WRITECLU,15) ACOUNTCICLASS),ALPHA,ICLASS

15 FORMATC/,4XPI3,' VECTORS WITH MEMBERSHIP > '

1F5.2,' IN CLASS',12)
16 CONTINUE

DO 18 ICLASS1I,KLASES
WRITECLUo17) BCOUNTCICLASS),BETA,ICLASS

17 FORMAT(/,4X,13,' VECTORS WITH MEMBERSHIP < '

1F5.2,' IN CLASS',12)
is1 CONTINUE

DO 20 ICLASS~1,KLASES
klRITECLU,19) ICOUNTCICLASS),ALPHA,BETA,ICLASS

19 FORMAT(/,4X,13,' VECTORS WITH MEMBERSHIP >='
1F5.2,' AND <= 'PF5.2o' IN CLASS',12)

20 CONTINUE
C

RETURN
END
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$OPTIMIZE
C A SUBROUTINE WHICH COMPUTES AND OUTPUTS
C A CONFUSION MATRIX OF THE HARD PARTITION
C WHICH RESULTS FROM ASSIGNING A DATA
C VECTOR TO A CLASS IN WHICH IT HAS
C MEMBERSHIP FUNCTION VALUE.
C
C WRITTEN BY: MICHAEL R. GRAY
C
C COMPLETED:APR 84
C
C FILENAME: MGCMTRIX.FTH
C
C CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
C CALL CMTRIX(KLASES,VCOUNTLU,CHOICE)
C
C INPUT VARIABLESCNOT CHANGED):
C
C KLASES - INTEGER COUNT OF NUMBER OF CLASSES
C_
C VCOUNT - INTEGER COUNT OF NUMBER OF DATA SAMPLES
C
C LU - INTEGER WHICH HOLDS LOGICAL UNIT
C NUMBER FOR OUTPUT
C
C CHOICE - INTEGER WHICH SELECTS WHETHER TO CONSIDER
C MEMBERSHIPS PRODUCED BY CLUSTERING
C ALGORITHM(=2) OR CLASSIFICATION ALGORITHM(C1)
C
C MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS MEMBERSHIPS
C ASSIGNED BY CLUSTERING ALGORITHM, PASSED
C IN LABELLED FORTRAN COMMON "AREA3"
C
C NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS MEMBERSHIPS
C ASSIGNED BY CLASSIFICATION ALGORITHM, PASSED
C IN LABELLED COMMON "AREA5"
C
C OUTPUT VARIABLES:
C
C WRONG - INTEGERN2 ARRAY OF DIMENSION WHICH HOLDS
C INDICES OF MISCLASSIFIED SAMPLES, PASSED
C IN LABELLED FORTRAN COMMON "AREA4"
C
C WRNCNT - INTEGER WHICH HOLDS THE COUNT OF
C MISCLASSIFIED SAMPLES, PASSED IN
C IN LABELLED FORTRAN COMMON "AREA4"
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C PSEUDO - CODE
C
C ENTER CMTRIX
C INITIALIZE "WRNCNT" TO 0
C INITIALIZE VECTOR INDEX TO 1
C DO UNTIL(CLASSIFICATION OF ALL SAMPLES DETERMINED
C DETERMINE ACTUAL CLASS OF CURRENT VECTOR
C IF(CHOICE <= 2) THEN
C DETERMINE CLASS OF MAXIMUM MEMBERSHIP
C FOR CURRENT VECTOR FROM "MFUNCT" ARRAY
C ELSE
C DETERMINE CLASS OF MAXIMUM MEMBERSHIP
C FOR CURRENT VECTOR FROM "NMFUNC" ARRAY
C END IF
C INCREMENT CONFUSION MATRIX ELEMENT (ACTUAL,MAXIMUM)
C IF(ACTUAL NOT EQUAL MAXIMUM) THEN
C INCREMENT "WRNCNT"
C PUT INDEX OF MISCLASSIFIED SAMPLE IN "WRONG" ARRAY
C END IF
C INCREMENT VECTOR INDEX
C END DO UNTIL
C OUTPUT RESULTANT CONFUSION MATRIX
C RETURN
C

-- 7°.
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ccccCccccCccCcCCCCCccccccccc ccccc ccccCccCCCCCCCC .

SUBROUTINE CMTRIXCKLASES,VCOUNT,LUDCHOICE)
C

REAL MFUNCT(3,242),NMFUNC(3p2*2)-
INTEGER CARRAYC3,3),VCOUNTVECTOR,CLASS
INTEGER ACTUAL,CHOICELRNCTSTARTC3)oENDC3)
INTEGERN2 WRONGC242)
COMMON /AREA3/PIFUNCT /AREA5/NMFUNC
COMMON /AREA6/STARTPEND /AREA4/WRNCNT,WRONG

C
C DO UNTIL(CONFUSION MATRIX "ZEROED")

DO 2 I=1,KLASES
DO I J=1,KLASES H

I CONTINUE
2 CONTINUE
C END DO UNTIL
C

ERRMAX=G.o
WRHCNT~o

C DO UNTILCALL VECTORS ASSIGNED TO A CLASS)
DO 4 VECTORl1,VCOUNT

C
DMAXO0.0

DO 3 CLASS=1,KLASES
C-
C FIND ACTUAL CLASS VECTOR BELONGS IN
C

IFC(VECTOR.GE.STARTCCLASS)) .AND.
1 CVECTOR.LE.ENDCCLASS))) THEN

ACTUAL=CLASS
END IF

C FIND CLASS OF MAXIMUM MEMBERSHIP-
IF(CHOICE.LE.2) THEN

IF(MFUNCTCCLASSVECTOR) .GT.DMAX) THEN
DMAX=MFUNCT (CLASS, VECTOR)
NUMBER=CLASS

END IF
C

ELSE
IF(NMFUNCCCLASS,VECTOR).GT.DMAX) THEN

DMAXNHMFUNCC CLASS, VECTOR)
NUMB ER=CL ASS

END IF
C

END IF
C
3 CONTINUE

c CARRAYCACA, NUMDER)=CARRAYC ACTUAL, NUMBER)+I

IF(NUPIIER.NE.ACTUAL) THEN
WRNCNT=WRNCNT*1
bIRONOC WRNCNT )=VECTOR

END IF
C

4 CONTINUE
C END DO UNTIL
C

WRITE(CLU, 5)
5 FORMAT(/,' THE HARD PARTITION SHOWN IN THE

1'CONFUSION MATRIX WAS CONSTRUCTED USING MAXIMUM
2'MEMBERSHIP VALUE FOR EACH CLASS.')

C
WRITECLU,6) KLASES,KLASES

6 FORMAT(, ',7X,'CONFUSION MATRIX: ROWS 1-',12,
I' SHOW CLASSIFICATION OF CLASSES I-'PI2p

2'''RESPECTIVELY.')
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IJRITE(LU,7) (I,I=1,KLASES)
7 FORMATC/,IIX,'CLASS',3I5)
C
C DO UNTIL(CONFUSION MATRIX PRINTED)

DO 9 INDEX=1,KLASES
WRITE(LU,8) INDEX,CCARRAYCINDEX,I),I=1,KLASES)

a FORMAT(/,13X.I1,4XI3,2X,I3,2X,I3)
9 CONTINUE
C END DO UNTIL
C

RETURN
END
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